IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v99y2008i1p25-49.html
   My bibliography  Save this article

Approximating posterior probabilities in a linear model with possibly noninvertible moving average errors

Author

Listed:
  • Pokta, Suriani
  • Hart, Jeffrey D.

Abstract

The method of Laplace is used to approximate posterior probabilities for a collection of polynomial regression models when the errors follow a process with a noninvertible moving average component. These results are useful in the problem of period-change analysis of variable stars and in assessing the posterior probability that a time series with trend has been overdifferenced. The nonstandard covariance structure induced by a noninvertible moving average process can invalidate the standard Laplace method. A number of analytical tools is used to produce corrected Laplace approximations. These tools include viewing the covariance matrix of the observations as tending to a differential operator. The use of such an operator and its Green's function provides a convenient and systematic method of asymptotically inverting the covariance matrix. In certain cases there are two different Laplace approximations, and the appropriate one to use depends upon unknown parameters. This problem is dealt with by using a weighted geometric mean of the candidate approximations, where the weights are completely data-based and such that, asymptotically, the correct approximation is used. The new methodology is applied to an analysis of the prototypical long-period variable star known as Mira.

Suggested Citation

  • Pokta, Suriani & Hart, Jeffrey D., 2008. "Approximating posterior probabilities in a linear model with possibly noninvertible moving average errors," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 25-49, January.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:1:p:25-49
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00058-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsay, Ruey S, 1993. "Testing for Noninvertible Models with Applications," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 225-233, April.
    2. Sargan, J D & Bhargava, Alok, 1983. "Maximum Likelihood Estimation of Regression Models with First Order Moving Average Errors When the Root Lies on the Unit Circle," Econometrica, Econometric Society, vol. 51(3), pages 799-820, May.
    3. Plosser, Charles I. & Schwert, G. William, 1977. "Estimation of a non-invertible moving average process : The case of overdifferencing," Journal of Econometrics, Elsevier, vol. 6(2), pages 199-224, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Y. Campbell & N. Gregory Mankiw, 1987. "Are Output Fluctuations Transitory?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 102(4), pages 857-880.
    2. Christiano, Lawrence J. & Eichenbaum, Martin, 1990. "Unit roots in real GNP: Do we know, and do we care?," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 32(1), pages 7-61, January.
    3. Ismael Sanchez & Daniel Pena, 2001. "Properties of Predictors in Overdifferenced Nearly Nonstationary Autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(1), pages 45-66, January.
    4. Consuelo Arellano & Sastry G. Pantula, 1995. "Testing For Trend Stationarity Versus Difference Stationarity," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(2), pages 147-164, March.
    5. Vougas, Dimitrios V., 2008. "New exact ML estimation and inference for a Gaussian MA(1) process," Economics Letters, Elsevier, vol. 99(1), pages 172-176, April.
    6. Hotta, Luiz K. & Morettin, Pedro A. & Pereira, Pedro L. Valls, 1992. "The Effect of Overlapping Aggregation on Time Series Models: An Application to the Unemployment Rate in Brazil," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 12(2), November.
    7. Kim, Chang-Jin & Kim, Jaeho, 2013. "The `Pile-up Problem' in Trend-Cycle Decomposition of Real GDP: Classical and Bayesian Perspectives," MPRA Paper 51118, University Library of Munich, Germany.
    8. Müller, Ulrich K. & Wang, Yulong, 2019. "Nearly weighted risk minimal unbiased estimation," Journal of Econometrics, Elsevier, vol. 209(1), pages 18-34.
    9. Yabe, Ryota, 2017. "Asymptotic distribution of the conditional-sum-of-squares estimator under moderate deviation from a unit root in MA(1)," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 220-226.
    10. Michael R. Darby, 1981. "Does purchasing power parity work?," Proceedings, Federal Reserve Bank of San Francisco, issue 5, pages 136-173.
    11. Breitung, Jörg, 1998. "Canonical correlation statistics for testing the cointegration rank in a reversed order," SFB 373 Discussion Papers 1998,105, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    12. Koichiro Moriya & Akihiko Noda, 2023. "On the Time-Varying Structure of the Arbitrage Pricing Theory using the Japanese Sector Indices," Papers 2305.05998, arXiv.org, revised Mar 2024.
    13. Michael R. Darby, 1983. "Movements in Purchasing Power Parity: The Short and Long Runs," NBER Chapters, in: The International Transmission of Inflation, pages 462-477, National Bureau of Economic Research, Inc.
    14. Jukka Nyblom & Andrew Harvey, 2001. "Testing against smooth stochastic trends," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 415-429.
    15. Perron, Pierre & Wada, Tatsuma, 2009. "Let's take a break: Trends and cycles in US real GDP," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 749-765, September.
    16. Choi, In, 2001. "Unit root tests for panel data," Journal of International Money and Finance, Elsevier, vol. 20(2), pages 249-272, April.
    17. Kleibergen, F.R. & Hoek, H., 1995. "Bayesian analysis of ARMA models using noninformative priors," Other publications TiSEM 81684a10-935f-49c4-b5ab-0, Tilburg University, School of Economics and Management.
    18. Brand, Claus & Mazelis, Falk, 2019. "Taylor-rule consistent estimates of the natural rate of interest," Working Paper Series 2257, European Central Bank.
    19. Lynda Khalaf & Beatriz Peraza López, 2020. "Simultaneous Indirect Inference, Impulse Responses and ARMA Models," Econometrics, MDPI, vol. 8(2), pages 1-26, April.
    20. Nikolay Gospodinov & Serena Ng, 2015. "Minimum Distance Estimation of Possibly Noninvertible Moving Average Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 403-417, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:1:p:25-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.