IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v98y2007i3p638-659.html
   My bibliography  Save this article

Second order optimality for estimators in time series regression models

Author

Listed:
  • Tamaki, Kenichiro

Abstract

We consider the second order asymptotic properties of an efficient frequency domain regression coefficient estimator proposed by Hannan [Regression for time series, Proc. Sympos. Time Series Analysis (Brown Univ., 1962), Wiley, New York, 1963, pp. 17-37]. This estimator is a semiparametric estimator based on nonparametric spectral estimators. We derive the second order Edgeworth expansion of the distribution of . Then it is shown that the second order asymptotic properties are independent of the bandwidth choice for residual spectral estimator, which implies that has the same rate of convergence as in regular parametric estimation. This is a sharp contrast with the general semiparametric estimation theory. We also examine the second order Gaussian efficiency of . Numerical studies are given to confirm the theoretical results.

Suggested Citation

  • Tamaki, Kenichiro, 2007. "Second order optimality for estimators in time series regression models," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 638-659, March.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:3:p:638-659
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00035-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robinson, P M, 1991. "Automatic Frequency Domain Inference on Semiparametric and Nonparametric Models," Econometrica, Econometric Society, vol. 59(5), pages 1329-1363, September.
    2. Velasco, Carlos & Robinson, Peter M., 2001. "Edgeworth Expansions For Spectral Density Estimates And Studentized Sample Mean," Econometric Theory, Cambridge University Press, vol. 17(3), pages 497-539, June.
    3. Taniguchi, Masanobu & van Garderen, Kees Jan & Puri, Madan L., 2003. "Higher Order Asymptotic Theory For Minimum Contrast Estimators Of Spectral Parameters Of Stationary Processes," Econometric Theory, Cambridge University Press, vol. 19(6), pages 984-1007, December.
    4. Rothenberg, Thomas J, 1984. "Approximate Normality of Generalized Least Squares Estimates," Econometrica, Econometric Society, vol. 52(4), pages 811-825, July.
    5. Linton, Oliver, 1995. "Second Order Approximation in the Partially Linear Regression Model," Econometrica, Econometric Society, vol. 63(5), pages 1079-1112, September.
    6. Linton, Oliver & Xiao, Zhijie, 2001. "Second-Order Approximation For Adaptive Regression Estimators," Econometric Theory, Cambridge University Press, vol. 17(5), pages 984-1024, October.
    7. Toyooka, Yasuyuki, 1985. "Second-order risk comparison of SLSE with GLSE and MLE in a regression with serial correlation," Journal of Multivariate Analysis, Elsevier, vol. 17(2), pages 107-126, October.
    8. Xiao, Zhijie & Phillips, Peter C. B., 1998. "Higher-order approximations for frequency domain time series regression," Journal of Econometrics, Elsevier, vol. 86(2), pages 297-336, June.
    9. Xiao, Zhijie & Phillips, Peter C. B., 2002. "Higher order approximations for Wald statistics in time series regressions with integrated processes," Journal of Econometrics, Elsevier, vol. 108(1), pages 157-198, May.
    10. Taniguchi, Masanobu & Puri, Madan L. & Kondo, Masao, 1996. "Nonparametric Approach for Non-Gaussian Vector Stationary Processes," Journal of Multivariate Analysis, Elsevier, vol. 56(2), pages 259-283, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Wilhelm, 2014. "Optimal bandwidth selection for robust generalized method of moments estimation," CeMMAP working papers 15/14, Institute for Fiscal Studies.
    2. Wilhelm, Daniel, 2015. "Optimal Bandwidth Selection For Robust Generalized Method Of Moments Estimation," Econometric Theory, Cambridge University Press, vol. 31(5), pages 1054-1077, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Zhijie & Phillips, Peter C. B., 2002. "Higher order approximations for Wald statistics in time series regressions with integrated processes," Journal of Econometrics, Elsevier, vol. 108(1), pages 157-198, May.
    2. Xiao, Zhijie & Phillips, Peter C. B., 1998. "Higher-order approximations for frequency domain time series regression," Journal of Econometrics, Elsevier, vol. 86(2), pages 297-336, June.
    3. Phillips, Peter C.B., 2014. "Optimal estimation of cointegrated systems with irrelevant instruments," Journal of Econometrics, Elsevier, vol. 178(P2), pages 210-224.
    4. Oliver Linton, 1997. "Second Order Approximation in a Linear Regression with Heteroskedasticity for Unknown Form," Cowles Foundation Discussion Papers 1151, Cowles Foundation for Research in Economics, Yale University.
    5. Zhijie Xiao & Peter C.B. Phillips, 1998. "Higher Order Approximations for Wald Statistics in Cointegrating Regressions," Cowles Foundation Discussion Papers 1192, Cowles Foundation for Research in Economics, Yale University.
    6. Peter C.B. Phillips & Binbin Guo & Zhijie Xiao, 2002. "Efficient Regression in Time Series Partial Linear Models," Cowles Foundation Discussion Papers 1363, Cowles Foundation for Research in Economics, Yale University.
    7. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    8. Linton, Oliver, 1995. "Second Order Approximation in the Partially Linear Regression Model," Econometrica, Econometric Society, vol. 63(5), pages 1079-1112, September.
    9. Eichler, Michael, 2008. "Testing nonparametric and semiparametric hypotheses in vector stationary processes," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 968-1009, May.
    10. Peter C. B. Phillips, 2003. "Laws and Limits of Econometrics," Economic Journal, Royal Economic Society, vol. 113(486), pages 26-52, March.
    11. Daniel Wilhelm, 2014. "Optimal bandwidth selection for robust generalized method of moments estimation," CeMMAP working papers 15/14, Institute for Fiscal Studies.
    12. Politis, D N, 2009. "Higher-Order Accurate, Positive Semi-definite Estimation of Large-Sample Covariance and Spectral Density Matrices," University of California at San Diego, Economics Working Paper Series qt66w826hz, Department of Economics, UC San Diego.
    13. Wilhelm, Daniel, 2015. "Optimal Bandwidth Selection For Robust Generalized Method Of Moments Estimation," Econometric Theory, Cambridge University Press, vol. 31(5), pages 1054-1077, October.
    14. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    15. Hidehiko Ichimura & Oliver Linton, 2001. "Asymptotic expansions for some semiparametric program evaluation estimators," CeMMAP working papers 04/01, Institute for Fiscal Studies.
    16. Kakizawa, Yoshihide, 2007. "Moderate deviations for quadratic forms in Gaussian stationary processes," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 992-1017, May.
    17. Karavias, Yiannis & Symeonides, Spyridon D. & Tzavalis, Elias, 2018. "Higher order expansions for error variance matrix estimates in the Gaussian AR(1) linear regression model," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 54-59.
    18. Chambers, Marcus J. & Ercolani, Joanne S. & Taylor, A.M. Robert, 2014. "Testing for seasonal unit roots by frequency domain regression," Journal of Econometrics, Elsevier, vol. 178(P2), pages 243-258.
    19. Javier Hualde & Peter M Robinson, 2006. "Semiparametric Estimation of Fractional Cointegration," STICERD - Econometrics Paper Series 502, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    20. Wouter J. Den Haan & Andrew T. Levin, 1995. "Inferences from parametric and non-parametric covariance matrix estimation procedures," International Finance Discussion Papers 504, Board of Governors of the Federal Reserve System (U.S.).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:3:p:638-659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.