IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v97y2006i1p148-178.html
   My bibliography  Save this article

Asymptotics for testing hypothesis in some multivariate variance components model under non-normality

Author

Listed:
  • Gupta, Arjun K.
  • Harrar, Solomon W.
  • Fujikoshi, Yasunori

Abstract

We consider the problem of deriving the asymptotic distribution of the three commonly used multivariate test statistics, namely likelihood ratio, Lawley-Hotelling and Bartlett-Nanda-Pillai statistics, for testing hypotheses on the various effects (main, nested or interaction) in multivariate mixed models. We derive the distributions of these statistics, both in the null as well as non-null cases, as the number of levels of one of the main effects (random or fixed) goes to infinity. The robustness of these statistics against departure from normality will be assessed. Essentially, in the asymptotic spirit of this paper, both the hypothesis and error degrees of freedom tend to infinity at a fixed rate. It is intuitively appealing to consider asymptotics of this type because, for example, in random or mixed effects models, the levels of the main random factors are assumed to be a random sample from a large population of levels. For the asymptotic results of this paper to hold, we do not require any distributional assumption on the errors. That means the results can be used in real-life applications where normality assumption is not tenable. As it happens, the asymptotic distributions of the three statistics are normal. The statistics have been found to be asymptotically null robust against the departure from normality in the balanced designs. The expressions for the asymptotic means and variances are fairly simple. That makes the results an attractive alternative to the standard asymptotic results. These statements are favorably supported by the numerical results.

Suggested Citation

  • Gupta, Arjun K. & Harrar, Solomon W. & Fujikoshi, Yasunori, 2006. "Asymptotics for testing hypothesis in some multivariate variance components model under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 148-178, January.
  • Handle: RePEc:eee:jmvana:v:97:y:2006:i:1:p:148-178
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00233-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yasunori Fujikoshi, 1975. "Asymptotic formulas for the non-null distributions of three statistics for multivariate linear hypothesis," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 27(1), pages 99-108, December.
    2. Mathew, Thomas, 1989. "MANOVA in the multivariate components of variance model," Journal of Multivariate Analysis, Elsevier, vol. 29(1), pages 30-38, April.
    3. Schott, James R. & Saw, John G., 1984. "A multivariate one-way classification model with random effects," Journal of Multivariate Analysis, Elsevier, vol. 15(1), pages 1-12, August.
    4. Magnus, J.R. & Neudecker, H., 1979. "The commutation matrix : Some properties and applications," Other publications TiSEM d0b1e779-7795-4676-ac98-1, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Solomon Harrar & Arne Bathke, 2012. "A modified two-factor multivariate analysis of variance: asymptotics and small sample approximations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 135-165, February.
    2. Chun-Lung Su, 2021. "Bayesian multi-way balanced nested MANOVA models with random effects and a large number of the main factor levels," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 663-692, July.
    3. Trent Gaugler & Michael G. Akritas, 2011. "Testing for Interaction in Two-Way Random and Mixed Effects Models: The Fully Nonparametric Approach," Biometrics, The International Biometric Society, vol. 67(4), pages 1314-1320, December.
    4. Liu, Chunxu & Bathke, Arne C. & Harrar, Solomon W., 2011. "A nonparametric version of Wilks' lambda--Asymptotic results and small sample approximations," Statistics & Probability Letters, Elsevier, vol. 81(10), pages 1502-1506, October.
    5. Bathke, Arne C. & Harrar, Solomon W. & Wang, Haiyan & Zhang, Ke & Piepho, Hans-Peter, 2010. "Series of randomized complete block experiments with non-normal data," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1840-1857, July.
    6. Solomon Harrar & Arjun Gupta, 2007. "Asymptotic Expansion for the Null Distribution of the F-statistic in One-way ANOVA under Non-normality," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(3), pages 531-556, September.
    7. Teng, Suyan & Lee, Loo Hay & Chew, Ek Peng, 2010. "Integration of indifference-zone with multi-objective computing budget allocation," European Journal of Operational Research, Elsevier, vol. 203(2), pages 419-429, June.
    8. Güven, Bilgehan, 2015. "A mixed model for complete three or higher-way layout with two random effects factors," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 45-55.
    9. Harrar, Solomon W. & Kong, Xiaoli, 2022. "Recent developments in high-dimensional inference for multivariate data: Parametric, semiparametric and nonparametric approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solomon Harrar & Arne Bathke, 2012. "A modified two-factor multivariate analysis of variance: asymptotics and small sample approximations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 135-165, February.
    2. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    3. Jochmans, Koen, 2024. "Nonparametric identification and estimation of stochastic block models from many small networks," Journal of Econometrics, Elsevier, vol. 242(2).
    4. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2019. "How Sensitive Are VAR Forecasts to Prior Hyperparameters? An Automated Sensitivity Analysis," Advances in Econometrics, in: Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A, volume 40, pages 229-248, Emerald Group Publishing Limited.
    5. O. J. Boxma & E. J. Cahen & D. Koops & M. Mandjes, 2019. "Linear Stochastic Fluid Networks: Rare-Event Simulation and Markov Modulation," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 125-153, March.
    6. Loperfido, Nicola, 2014. "Linear transformations to symmetry," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 186-192.
    7. Liu, Shuangzhe & Leiva, Víctor & Zhuang, Dan & Ma, Tiefeng & Figueroa-Zúñiga, Jorge I., 2022. "Matrix differential calculus with applications in the multivariate linear model and its diagnostics," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    8. Arismendi, J.C., 2013. "Multivariate truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 41-75.
    9. Reinaldo B. Arellano-Valle & Adelchi Azzalini, 2022. "Some properties of the unified skew-normal distribution," Statistical Papers, Springer, vol. 63(2), pages 461-487, April.
    10. Dante Amengual & Gabriele Fiorentini & Enrique Sentana, 2022. "Tests for Random Coefficient Variation in Vector Autoregressive Models," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 1-35, Emerald Group Publishing Limited.
    11. Dlugoszek, Grzegorz R., 2016. "Solving DSGE portfolio choice models with asymmetric countries," SFB 649 Discussion Papers 2016-009, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Symeonides Spyridon D. & Karavias Yiannis & Tzavalis Elias, 2017. "Size corrected Significance Tests in Seemingly Unrelated Regressions with Autocorrelated Errors," Journal of Time Series Econometrics, De Gruyter, vol. 9(1), pages 1-41, January.
    13. Heinz Neudecker, 2004. "Problemsection," Statistical Papers, Springer, vol. 45(2), pages 297-301, April.
    14. Hausman, Jerry & Kuersteiner, Guido, 2008. "Difference in difference meets generalized least squares: Higher order properties of hypotheses tests," Journal of Econometrics, Elsevier, vol. 144(2), pages 371-391, June.
    15. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    16. Liu-Evans, Gareth, 2014. "A note on approximating moments of least squares estimators," MPRA Paper 57543, University Library of Munich, Germany.
    17. Jan Koláček & Ivana Horová, 2017. "Bandwidth matrix selectors for kernel regression," Computational Statistics, Springer, vol. 32(3), pages 1027-1046, September.
    18. Paul Bekker, 1986. "A note on the identification of restricted factor loading matrices," Psychometrika, Springer;The Psychometric Society, vol. 51(4), pages 607-611, December.
    19. Manuel Galea & Patricia Giménez, 2019. "Local influence diagnostics for the test of mean–variance efficiency and systematic risks in the capital asset pricing model," Statistical Papers, Springer, vol. 60(1), pages 293-312, February.
    20. Filippeli, Thomai & Harrison, Richard & Theodoridis, Konstantinos, 2018. "DSGE-based Priors for BVARs & Quasi-Bayesian DSGE Estimation," Cardiff Economics Working Papers E2018/5, Cardiff University, Cardiff Business School, Economics Section.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:1:p:148-178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.