IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i7p1840-1857.html
   My bibliography  Save this article

Series of randomized complete block experiments with non-normal data

Author

Listed:
  • Bathke, Arne C.
  • Harrar, Solomon W.
  • Wang, Haiyan
  • Zhang, Ke
  • Piepho, Hans-Peter

Abstract

Randomized complete block designs are common in agricultural and other experiments. In this manuscript, we derive asymptotic procedures as well as finite approximations, for the analysis of data arising from series of such experiments. We do not assume normality of the data, and the within-block covariance structures can be arbitrary (no restriction to compound symmetry). The methods are specifically designed for trials with many environments and few blocks per environment, such as multi-environment trials in variety testing and plant breeding. We consider fixed and random effects models for the environment factor. The methodology takes advantage of multivariate notation, and the questions of interest are formulated as profile analysis problems. Finite performance of the proposed procedures is examined in a simulation study, and application is demonstrated using data from a series of crop variety trials.

Suggested Citation

  • Bathke, Arne C. & Harrar, Solomon W. & Wang, Haiyan & Zhang, Ke & Piepho, Hans-Peter, 2010. "Series of randomized complete block experiments with non-normal data," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1840-1857, July.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:7:p:1840-1857
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00058-7
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bathke, Arne C. & Harrar, Solomon W. & Madden, Laurence V., 2008. "How to compare small multivariate samples using nonparametric tests," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 4951-4965, July.
    2. Boos, Dennis D. & Brownie, Cavell, 1995. "ANOVA and rank tests when the number of treatments is large," Statistics & Probability Letters, Elsevier, vol. 23(2), pages 183-191, May.
    3. T. Caliński & S. Czajka & Z. Kaczmarek & P. Krajewski & W. Pilarczyk, 2005. "Analyzing Multi-environment Variety Trials Using Randomization-Derived Mixed Models," Biometrics, The International Biometric Society, vol. 61(2), pages 448-455, June.
    4. Gupta, Arjun K. & Harrar, Solomon W. & Fujikoshi, Yasunori, 2006. "Asymptotics for testing hypothesis in some multivariate variance components model under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 148-178, January.
    5. Harrar, Solomon W. & Bathke, Arne C., 2008. "Nonparametric methods for unbalanced multivariate data and many factor levels," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1635-1664, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harrar, Solomon W. & Kong, Xiaoli, 2016. "High-dimensional multivariate repeated measures analysis with unequal covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 1-21.
    2. Johannes Forkman, 2013. "The use of a reference variety for comparisons in incomplete series of crop variety trials," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(12), pages 2681-2698, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harrar, Solomon W. & Kong, Xiaoli, 2022. "Recent developments in high-dimensional inference for multivariate data: Parametric, semiparametric and nonparametric approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Solomon Harrar & Arne Bathke, 2012. "A modified two-factor multivariate analysis of variance: asymptotics and small sample approximations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 135-165, February.
    3. Liu, Chunxu & Bathke, Arne C. & Harrar, Solomon W., 2011. "A nonparametric version of Wilks' lambda--Asymptotic results and small sample approximations," Statistics & Probability Letters, Elsevier, vol. 81(10), pages 1502-1506, October.
    4. Rauf Ahmad, M. & Werner, C. & Brunner, E., 2008. "Analysis of high-dimensional repeated measures designs: The one sample case," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 416-427, December.
    5. Gunawardana, Asanka & Konietschke, Frank, 2019. "Nonparametric multiple contrast tests for general multivariate factorial designs," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 165-180.
    6. Chun-Lung Su, 2021. "Bayesian multi-way balanced nested MANOVA models with random effects and a large number of the main factor levels," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 663-692, July.
    7. Dennis Dobler & Sarah Friedrich & Markus Pauly, 2020. "Nonparametric MANOVA in meaningful effects," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 997-1022, August.
    8. Konietschke, Frank & Bathke, Arne C. & Harrar, Solomon W. & Pauly, Markus, 2015. "Parametric and nonparametric bootstrap methods for general MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 291-301.
    9. Friedrich, Sarah & Pauly, Markus, 2018. "MATS: Inference for potentially singular and heteroscedastic MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 166-179.
    10. Rosa Arboretti & Riccardo Ceccato & Livio Corain & Fabrizio Ronchi & Luigi Salmaso, 2018. "Multivariate small sample tests for two-way designs with applications to industrial statistics," Statistical Papers, Springer, vol. 59(4), pages 1483-1503, December.
    11. Calhoun, Gray, 2011. "Hypothesis testing in linear regression when k/n is large," Journal of Econometrics, Elsevier, vol. 165(2), pages 163-174.
    12. Teng, Suyan & Lee, Loo Hay & Chew, Ek Peng, 2010. "Integration of indifference-zone with multi-objective computing budget allocation," European Journal of Operational Research, Elsevier, vol. 203(2), pages 419-429, June.
    13. Alexander S. Long & Brian J. Reich & Ana‐Maria Staicu & John Meitzen, 2023. "A nonparametric test of group distributional differences for hierarchically clustered functional data," Biometrics, The International Biometric Society, vol. 79(4), pages 3778-3791, December.
    14. Hasler Mario, 2014. "Multiple Contrast Tests for Multiple Endpoints in the Presence of Heteroscedasticity," The International Journal of Biostatistics, De Gruyter, vol. 10(1), pages 17-28, May.
    15. Wang, Haiyan & Akritas, Michael G., 2010. "Rank test for heteroscedastic functional data," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1791-1805, September.
    16. Jiménez-Gamero, M. Dolores & Franco-Pereira, Alba M., 2021. "Testing the equality of a large number of means of functional data," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    17. T. Caliński & S. Czajka & Z. Kaczmarek & P. Krajewski & W. Pilarczyk, 2009. "A mixed model analysis of variance for multi-environment variety trials," Statistical Papers, Springer, vol. 50(4), pages 735-759, August.
    18. Trent Gaugler & Michael G. Akritas, 2011. "Testing for Interaction in Two-Way Random and Mixed Effects Models: The Fully Nonparametric Approach," Biometrics, The International Biometric Society, vol. 67(4), pages 1314-1320, December.
    19. Panda, Deepak Kumar & Das, Saptarshi, 2021. "Economic operational analytics for energy storage placement at different grid locations and contingency scenarios with stochastic wind profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Badi Baltagi & Chihwa Kao & Sanggon Na, 2013. "Testing for cross-sectional dependence in a panel factor model using the wild bootstrap $$F$$ test," Statistical Papers, Springer, vol. 54(4), pages 1067-1094, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:7:p:1840-1857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.