IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v97y2006i10p2071-2100.html
   My bibliography  Save this article

Optimizing random scan Gibbs samplers

Author

Listed:
  • Levine, Richard A.
  • Casella, George

Abstract

The Gibbs sampler is a popular Markov chain Monte Carlo routine for generating random variates from distributions otherwise difficult to sample. A number of implementations are available for running a Gibbs sampler varying in the order through which the full conditional distributions used by the Gibbs sampler are cycled or visited. A common, and in fact the original, implementation is the random scan strategy, whereby the full conditional distributions are updated in a randomly selected order each iteration. In this paper, we introduce a random scan Gibbs sampler which adaptively updates the selection probabilities or "learns" from all previous random variates generated during the Gibbs sampling. In the process, we outline a number of variations on the random scan Gibbs sampler which allows the practitioner many choices for setting the selection probabilities and prove convergence of the induced (Markov) chain to the stationary distribution of interest. Though we emphasize flexibility in user choice and specification of these random scan algorithms, we present a minimax random scan which determines the selection probabilities through decision theoretic considerations on the precision of estimators of interest. We illustrate and apply the results presented by using the adaptive random scan Gibbs sampler developed to sample from multivariate Gaussian target distributions, to automate samplers for posterior simulation under Dirichlet process mixture models, and to fit mixtures of distributions.

Suggested Citation

  • Levine, Richard A. & Casella, George, 2006. "Optimizing random scan Gibbs samplers," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2071-2100, November.
  • Handle: RePEc:eee:jmvana:v:97:y:2006:i:10:p:2071-2100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00061-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amit, Y. & Grenander, U., 1991. "Comparing sweep strategies for stochastic relaxation," Journal of Multivariate Analysis, Elsevier, vol. 37(2), pages 197-222, May.
    2. G. O. Roberts & S. K. Sahu, 1997. "Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 291-317.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johnson, Alicia A. & Jones, Galin L., 2015. "Geometric ergodicity of random scan Gibbs samplers for hierarchical one-way random effects models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 325-342.
    2. Hugh Christensen & Simon Godsill & Richard E Turner, 2020. "Hidden Markov Models Applied To Intraday Momentum Trading With Side Information," Papers 2006.08307, arXiv.org.
    3. Chen, Shyh-Huei & Ip, Edward H. & Wang, Yuchung J., 2011. "Gibbs ensembles for nearly compatible and incompatible conditional models," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1760-1769, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
    2. Strickland, Chris M. & Martin, Gael M. & Forbes, Catherine S., 2008. "Parameterisation and efficient MCMC estimation of non-Gaussian state space models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2911-2930, February.
    3. Ahelegbey, Daniel Felix & Giudici, Paolo & Hashem, Shatha Qamhieh, 2021. "Network VAR models to measure financial contagion," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    4. Pasanisi, Alberto & Fu, Shuai & Bousquet, Nicolas, 2012. "Estimating discrete Markov models from various incomplete data schemes," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2609-2625.
    5. Yin, Libo & Ma, Xiyuan, 2018. "Causality between oil shocks and exchange rate: A Bayesian, graph-based VAR approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 434-453.
    6. MacEachern, Steven N. & Peruggia, Mario, 2000. "Subsampling the Gibbs sampler: variance reduction," Statistics & Probability Letters, Elsevier, vol. 47(1), pages 91-98, March.
    7. Håvard Rue & Ingelin Steinsland & Sveinung Erland, 2004. "Approximating hidden Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 877-892, November.
    8. Sanjay Chaudhuri, 2014. "Qualitative inequalities for squared partial correlations of a Gaussian random vector," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 345-367, April.
    9. Barone, Piero & Sebastiani, Giovanni & Stander, Julian, 2001. "General over-relaxation Markov chain Monte Carlo algorithms for Gaussian densities," Statistics & Probability Letters, Elsevier, vol. 52(2), pages 115-124, April.
    10. Wong, Jackie S.T. & Forster, Jonathan J. & Smith, Peter W.F., 2018. "Bayesian mortality forecasting with overdispersion," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 206-221.
    11. Chib, Siddhartha, 2004. "Markov Chain Monte Carlo Technology," Papers 2004,22, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    12. Jin, Zhumengmeng & Hobert, James P., 2022. "On the convergence rate of the “out-of-order” block Gibbs sampler," Statistics & Probability Letters, Elsevier, vol. 188(C).
    13. Moores, Matthew T. & Hargrave, Catriona E. & Deegan, Timothy & Poulsen, Michael & Harden, Fiona & Mengersen, Kerrie, 2015. "An external field prior for the hidden Potts model with application to cone-beam computed tomography," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 27-41.
    14. Bianchi, Daniele & Tamoni, Andrea, 2016. "The dynamics of expected returns: evidence from multi-scale time series modelling," LSE Research Online Documents on Economics 118992, London School of Economics and Political Science, LSE Library.
    15. Tervonen, Tommi & van Valkenhoef, Gert & Baştürk, Nalan & Postmus, Douwe, 2013. "Hit-And-Run enables efficient weight generation for simulation-based multiple criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 224(3), pages 552-559.
    16. Zhou, Haiming & Huang, Xianzheng, 2022. "Bayesian beta regression for bounded responses with unknown supports," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    17. Tom Wilderjans & Dirk Depril & Iven Mechelen, 2012. "Block-Relaxation Approaches for Fitting the INDCLUS Model," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 277-296, October.
    18. Schmidt, Paul & Mühlau, Mark & Schmid, Volker, 2017. "Fitting large-scale structured additive regression models using Krylov subspace methods," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 59-75.
    19. Roberto Casarin & Claudia Foroni & Massimiliano Marcellino & Francesco Ravazzolo, 2016. "Uncertainty Through the Lenses of A Mixed-Frequency Bayesian Panel Markov Switching Model," Working Papers 585, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    20. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:10:p:2071-2100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.