IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v87y2003i1p101-132.html
   My bibliography  Save this article

Survival function estimation when lifetime and censoring time are dependent

Author

Listed:
  • Ebrahimi, Nader
  • Molefe, Daniel

Abstract

In this paper we consider a model for dependent censoring and derive a consistent asymptotically normal estimator for the underlying survival distribution from a sample of censored data. The methodology is illustrated with an application to the analysis of cancer data. Some simulations to evaluate the performance of our estimator are also presented. The results indicate that our estimator performs reasonably well in comparison to the other dependent censoring survival curve estimators.

Suggested Citation

  • Ebrahimi, Nader & Molefe, Daniel, 2003. "Survival function estimation when lifetime and censoring time are dependent," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 101-132, October.
  • Handle: RePEc:eee:jmvana:v:87:y:2003:i:1:p:101-132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00027-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarda, P. & Vieu, P., 1991. "Smoothing parameter selection in hazard estimation," Statistics & Probability Letters, Elsevier, vol. 11(5), pages 429-434, May.
    2. J. B. Copas, 1983. "Plotting p Against X," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 32(1), pages 25-31, March.
    3. Rivest, Louis-Paul & Wells, Martin T., 2001. "A Martingale Approach to the Copula-Graphic Estimator for the Survival Function under Dependent Censoring," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 138-155, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geert Zittersteyn & Jennifer Alonso-García, 2021. "Common Factor Cause-Specific Mortality Model," Risks, MDPI, vol. 9(12), pages 1-30, December.
    2. Lo Simon M.S. & Wilke Ralf A., 2014. "A Regression Model for the Copula-Graphic Estimator," Journal of Econometric Methods, De Gruyter, vol. 3(1), pages 21-46, January.
    3. Menggang Yu & Constantin T. Yiannoutsos, 2015. "Marginal and Conditional Distribution Estimation from Double-sampled Semi-competing Risks Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 87-103, March.
    4. Schwarz, Maik & Jongbloed, Geurt & Van Keilegom, Ingrid, 2012. "On the identifiability of copulas in bivariate competing risks models," LIDAM Discussion Papers ISBA 2012032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Herbert Hove & Frank Beichelt & Parmod K. Kapur, 2017. "Estimation of the Frank copula model for dependent competing risks in accelerated life testing," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(4), pages 673-682, December.
    6. Jacobo Uña-Álvarez & Noël Veraverbeke, 2013. "Generalized copula-graphic estimator," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 343-360, June.
    7. Lo, Simon M.S. & Wilke, Ralf A. & Emura, Takeshi, 2024. "A semiparametric model for the cause-specific hazard under risk proportionality," Computational Statistics & Data Analysis, Elsevier, vol. 195(C).
    8. Bücher, Axel & Dette, Holger & Volgushev, Stanislav, 2012. "A test for Archimedeanity in bivariate copula models," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 121-132.
    9. Deresa, Negera Wakgari & Van Keilegom, Ingrid, 2020. "A multivariate normal regression model for survival data subject to different types of dependent censoring," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    10. Deresa, N.W. & Van Keilegom, I. & Antonio, K., 2022. "Copula-based inference for bivariate survival data with left truncation and dependent censoring," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 1-21.
    11. Lajmi Lakhal & Louis-Paul Rivest & Belkacem Abdous, 2008. "Estimating Survival and Association in a Semicompeting Risks Model," Biometrics, The International Biometric Society, vol. 64(1), pages 180-188, March.
    12. Simon M. S. Lo & Ralf A. Wilke, 2010. "A copula model for dependent competing risks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 359-376, March.
    13. Liu, Yi & Wang, Qihua, 2015. "Copula-graphic estimators for the marginal survival function with censoring indicators missing at random," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 101-110.
    14. Simon M.S. Lo & Ralf A. Wilke, 2011. "Identifiability and estimation of the sign of a covariate effect in the competing risks model," Discussion Papers 11/03, University of Nottingham, School of Economics.
    15. Shoukri, Mohamed M. & Kumar, Pranesh & Colak, Dilek, 2011. "Analyzing dependent proportions in cluster randomized trials: Modeling inter-cluster correlation via copula function," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1226-1235, March.
    16. Kim, Dongwoo, 2023. "Partially identifying competing risks models: An application to the war on cancer," Journal of Econometrics, Elsevier, vol. 234(2), pages 536-564.
    17. Sujica, Aleksandar & Van Keilegom, Ingrid, 2018. "The copula-graphic estimator in censored nonparametric location-scale regression models," Econometrics and Statistics, Elsevier, vol. 7(C), pages 89-114.
    18. Zhao, XiaoBing & Zhou, Xian, 2010. "Applying copula models to individual claim loss reserving methods," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 290-299, April.
    19. Emura, Takeshi & Hsu, Jiun-Huang, 2020. "Estimation of the Mann–Whitney effect in the two-sample problem under dependent censoring," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    20. Sun, Liuquan, 1997. "Bandwidth choice for hazard rate estimators from left truncated and right censored data," Statistics & Probability Letters, Elsevier, vol. 36(2), pages 101-114, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:87:y:2003:i:1:p:101-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.