IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i3p1226-1235.html
   My bibliography  Save this article

Analyzing dependent proportions in cluster randomized trials: Modeling inter-cluster correlation via copula function

Author

Listed:
  • Shoukri, Mohamed M.
  • Kumar, Pranesh
  • Colak, Dilek

Abstract

When two interventions are randomized to multiple sub-clusters within a whole cluster, accounting for the within sub-cluster (intra-cluster) and between sub-clusters (inter-cluster) correlations is needed to produce valid analyses of the effect of interventions. With the growing interest in copulas and their applications in statistical research, we demonstrate, through applications, how copula functions may be used to account for the correlation among responses across sub-clusters. Copulas having asymmetric dependence property may prove useful for modeling the relationship between random functions especially in clinical, health and environmental sciences where response data are in general skewed. These functions can in general be used to study scale-free measures of dependence, and they can be used as a starting point for constructing families of bivariate distributions, with a view to simulations. The core contribution of this paper is to provide an alternative approach for estimating the inter-cluster correlation using copula to accurately estimate the treatment effect when the outcome variable is measured on the dichotomous scale. Two data sets are used to illustrate the proposed methodology.

Suggested Citation

  • Shoukri, Mohamed M. & Kumar, Pranesh & Colak, Dilek, 2011. "Analyzing dependent proportions in cluster randomized trials: Modeling inter-cluster correlation via copula function," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1226-1235, March.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:3:p:1226-1235
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00325-7
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rivest, Louis-Paul & Wells, Martin T., 2001. "A Martingale Approach to the Copula-Graphic Estimator for the Survival Function under Dependent Censoring," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 138-155, October.
    2. Allan Donner & Neil Klar & Guangyong Zou, 2004. "Methods for the Statistical Analysis of Binary Data in Split-Cluster Designs," Biometrics, The International Biometric Society, vol. 60(4), pages 919-925, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tounkara Fodé & Rivest Louis-Paul, 2014. "Some New Random Effect Models for Correlated Binary Responses," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ebrahimi, Nader & Molefe, Daniel, 2003. "Survival function estimation when lifetime and censoring time are dependent," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 101-132, October.
    2. Schwarz, Maik & Jongbloed, Geurt & Van Keilegom, Ingrid, 2012. "On the identifiability of copulas in bivariate competing risks models," LIDAM Discussion Papers ISBA 2012032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Herbert Hove & Frank Beichelt & Parmod K. Kapur, 2017. "Estimation of the Frank copula model for dependent competing risks in accelerated life testing," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(4), pages 673-682, December.
    4. Jacobo Uña-Álvarez & Noël Veraverbeke, 2013. "Generalized copula-graphic estimator," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 343-360, June.
    5. Deresa, Negera Wakgari & Van Keilegom, Ingrid, 2020. "A multivariate normal regression model for survival data subject to different types of dependent censoring," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    6. Lajmi Lakhal & Louis-Paul Rivest & Belkacem Abdous, 2008. "Estimating Survival and Association in a Semicompeting Risks Model," Biometrics, The International Biometric Society, vol. 64(1), pages 180-188, March.
    7. Simon M. S. Lo & Ralf A. Wilke, 2010. "A copula model for dependent competing risks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 359-376, March.
    8. Liu, Yi & Wang, Qihua, 2015. "Copula-graphic estimators for the marginal survival function with censoring indicators missing at random," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 101-110.
    9. Zhao, XiaoBing & Zhou, Xian, 2010. "Applying copula models to individual claim loss reserving methods," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 290-299, April.
    10. Emura, Takeshi & Hsu, Jiun-Huang, 2020. "Estimation of the Mann–Whitney effect in the two-sample problem under dependent censoring," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    11. Sujica, Aleksandar & Van Keilegom, Ingrid, 2013. "Estimation of location and scale functionals in nonparametric regression under copula dependent censoring," LIDAM Discussion Papers ISBA 2013024, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Braekers, Roel & Veraverbeke, Noël, 2008. "A conditional Koziol-Green model under dependent censoring," Statistics & Probability Letters, Elsevier, vol. 78(7), pages 927-937, May.
    13. Jia-Han Shih & Takeshi Emura, 2018. "Likelihood-based inference for bivariate latent failure time models with competing risks under the generalized FGM copula," Computational Statistics, Springer, vol. 33(3), pages 1293-1323, September.
    14. Simon M. S. Lo & Ralf A. Wilke, 2010. "A copula model for dependent competing risks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 359-376, March.
    15. Lo Simon M.S. & Wilke Ralf A., 2014. "A Regression Model for the Copula-Graphic Estimator," Journal of Econometric Methods, De Gruyter, vol. 3(1), pages 21-46, January.
    16. Wang, Antai, 2012. "On the nonidentifiability property of Archimedean copula models under dependent censoring," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 621-625.
    17. Wang, Antai, 2014. "Properties of the marginal survival functions for dependent censored data under an assumed Archimedean copula," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 57-68.
    18. Lo, Simon M.S. & Stephan, Gesine & Wilke, Ralf, 2012. "Estimating the Latent Effect of Unemployment Benefits on Unemployment Duration," IZA Discussion Papers 6650, Institute of Labor Economics (IZA).
    19. Lo, Simon M.S. & Mammen, Enno & Wilke, Ralf A., 2020. "A nested copula duration model for competing risks with multiple spells," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    20. Lo Simon M.S. & Wilke Ralf A., 2014. "A Regression Model for the Copula-Graphic Estimator," Journal of Econometric Methods, De Gruyter, vol. 3(1), pages 21-46, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:3:p:1226-1235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.