IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v78y2001i2p299-318.html
   My bibliography  Save this article

Estimating a Distribution Function for Censored Time Series Data

Author

Listed:
  • Cai, Zongwu

Abstract

Consider a long term study, where a series of dependent and possibly censored failure times is observed. Suppose that the failure times have a common marginal distribution function, but they exhibit a mode of time series structure such as [alpha]-mixing. The inference on the marginal distribution function is of interest to us. The main results of this article show that, under some regularity conditions, the Kaplan-Meier estimator enjoys uniform consistency with rates, and a stochastic process generated by the Kaplan-Meier estimator converges weakly to a certain Gaussian process with a specified covariance structure. Finally, an estimator of the limiting variance of the Kaplan-Meier estimator is proposed and its consistency is established.

Suggested Citation

  • Cai, Zongwu, 2001. "Estimating a Distribution Function for Censored Time Series Data," Journal of Multivariate Analysis, Elsevier, vol. 78(2), pages 299-318, August.
  • Handle: RePEc:eee:jmvana:v:78:y:2001:i:2:p:299-318
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(00)91953-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masry, Elias & Tjøstheim, Dag, 1997. "Additive Nonlinear ARX Time Series and Projection Estimates," Econometric Theory, Cambridge University Press, vol. 13(2), pages 214-252, April.
    2. Koehler, K. J. & Symanowski, J. T., 1995. "Constructing Multivariate Distributions with Specific Marginal Distributions," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 261-282, November.
    3. Cai, Zongwu & Roussas, George G., 1998. "Kaplan-Meier Estimator under Association," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 318-348, November.
    4. Cai, Zongwu, 1998. "Asymptotic properties of Kaplan-Meier estimator for censored dependent data," Statistics & Probability Letters, Elsevier, vol. 37(4), pages 381-389, March.
    5. Andrews, Donald W.K., 1988. "Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables," Econometric Theory, Cambridge University Press, vol. 4(3), pages 458-467, December.
    6. Masry, Elias & Tjøstheim, Dag, 1995. "Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality," Econometric Theory, Cambridge University Press, vol. 11(2), pages 258-289, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    2. Liang, Han-Ying & de Ua-lvarez, Jacobo, 2009. "A Berry-Esseen type bound in kernel density estimation for strong mixing censored samples," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1219-1231, July.
    3. Zhou, Xing-cai & Xu, Ying-zhi & Lin, Jin-guan, 2017. "Wavelet estimation in varying coefficient models for censored dependent data," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 179-189.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fakoor, Vahid & Jomhoori, Sarah & Azarnoosh, Hasanali, 2009. "Asymptotic expansion for ISE of kernel density estimators under censored dependent model," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1809-1817, September.
    2. Cai, Zongwu, 2003. "Nonparametric estimation equations for time series data," Statistics & Probability Letters, Elsevier, vol. 62(4), pages 379-390, May.
    3. Fakoor, V., 2010. "Strong uniform consistency of kernel density estimators under a censored dependent model," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 318-323, March.
    4. Linton, Oliver & Mammen, Enno, 2003. "Estimating semiparametric ARCH (8) models by kernel smoothing methods," LSE Research Online Documents on Economics 2187, London School of Economics and Political Science, LSE Library.
    5. Cai, Zongwu & Xu, Xiaoping, 2009. "Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 371-383.
    6. Taoufik Bouezmarni & Jeroen Rombouts, 2008. "Density and hazard rate estimation for censored and α-mixing data using gamma kernels," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(7), pages 627-643.
    7. Kim, Woocheol & Linton, Oliver, 2003. "A local instrumental variable estimation method for generalized additive volatility models," LSE Research Online Documents on Economics 2028, London School of Economics and Political Science, LSE Library.
    8. Dong, Chaohua & Gao, Jiti & Tong, Howell, 2006. "Semiparametric penalty function method in partially linear model selection," MPRA Paper 11975, University Library of Munich, Germany, revised Aug 2006.
    9. Jürgen Franke & Peter Mwita & Weining Wang, 2015. "Nonparametric estimates for conditional quantiles of time series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 107-130, January.
    10. Xialu Liu & Zongwu Cai & Rong Chen, 2015. "Functional coefficient seasonal time series models with an application of Hawaii tourism data," Computational Statistics, Springer, vol. 30(3), pages 719-744, September.
    11. repec:hum:wpaper:sfb649dp2014-012 is not listed on IDEAS
    12. Gao, Jiti & Tong, Howell & Wolff, Rodney, 2002. "Model Specification Tests in Nonparametric Stochastic Regression Models," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 324-359, November.
    13. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    14. O. Linton & E. Mammen, 2005. "Estimating Semiparametric ARCH(∞) Models by Kernel Smoothing Methods," Econometrica, Econometric Society, vol. 73(3), pages 771-836, May.
    15. Liang, Han-Ying & de Ua-lvarez, Jacobo, 2009. "A Berry-Esseen type bound in kernel density estimation for strong mixing censored samples," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1219-1231, July.
    16. Yang, Lijian & Park, Byeong U. & Xue, Lan & Hardle, Wolfgang, 2006. "Estimation and Testing for Varying Coefficients in Additive Models With Marginal Integration," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1212-1227, September.
    17. Karlsen, Hans Arnfinn & Tjostheim, Dag, 1998. "Nonparametric estimation in null recurrent times series," SFB 373 Discussion Papers 1998,50, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    18. Li, Shu & Ernest, Jan & Bühlmann, Peter, 2017. "Nonparametric causal inference from observational time series through marginal integration," Econometrics and Statistics, Elsevier, vol. 2(C), pages 81-105.
    19. Yi Wu & Wei Yu & Xuejun Wang, 2022. "Strong representations of the Kaplan–Meier estimator and hazard estimator with censored widely orthant dependent data," Computational Statistics, Springer, vol. 37(1), pages 383-402, March.
    20. Han-Ying Liang & Jacobo Uña-Álvarez, 2011. "Asymptotic properties of conditional quantile estimator for censored dependent observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 267-289, April.
    21. Haiyan Wang & Michael Akritas, 2010. "Inference from heteroscedastic functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 149-168.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:78:y:2001:i:2:p:299-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.