IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v97y2006i6p1272-1283.html
   My bibliography  Save this article

Maximum entropy characterizations of the multivariate Liouville distributions

Author

Listed:
  • Bhattacharya, Bhaskar

Abstract

A random vector X=(X1,X2,...,Xn) with positive components has a Liouville distribution with parameter [theta]=([theta]1,[theta]2,...,[theta]n) if its joint probability density function is proportional to , [theta]i>0 [R.D. Gupta, D.S.P. Richards, Multivariate Liouville distributions, J. Multivariate Anal. 23 (1987) 233-256]. Examples include correlated gamma variables, Dirichlet and inverted Dirichlet distributions. We derive appropriate constraints which establish the maximum entropy characterization of the Liouville distributions among all multivariate distributions. Matrix analogs of the Liouville distributions are considered. Some interesting results related to I-projection from a Liouville distribution are presented.

Suggested Citation

  • Bhattacharya, Bhaskar, 2006. "Maximum entropy characterizations of the multivariate Liouville distributions," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1272-1283, July.
  • Handle: RePEc:eee:jmvana:v:97:y:2006:i:6:p:1272-1283
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00100-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Aulogiaris & K. Zografos, 2004. "A maximum entropy characterization of symmetric Kotz type and Burr multivariate distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(1), pages 65-83, June.
    2. Zografos, K. & Nadarajah, S., 2005. "Expressions for Rényi and Shannon entropies for multivariate distributions," Statistics & Probability Letters, Elsevier, vol. 71(1), pages 71-84, January.
    3. Gupta, Rameshwar D. & Richards, Donald St.P., 1987. "Multivariate Liouville distributions," Journal of Multivariate Analysis, Elsevier, vol. 23(2), pages 233-256, December.
    4. Peddada, Shyamal Das & Richards, Donald St. P., 1991. "Entropy inequalities for some multivariate distributions," Journal of Multivariate Analysis, Elsevier, vol. 39(1), pages 202-208, October.
    5. Karlin, Samuel & Rinott, Yosef, 1980. "Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions," Journal of Multivariate Analysis, Elsevier, vol. 10(4), pages 467-498, December.
    6. Silviu Guiasu, 1990. "A classification of the main probability distributions by minimizing the weighted logarithmic measure of deviation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(2), pages 269-279, June.
    7. Gokhale, D. V., 1983. "On entropy-based goodness-of-fit tests," Computational Statistics & Data Analysis, Elsevier, vol. 1(1), pages 157-165, March.
    8. Zografos, K., 1999. "On Maximum Entropy Characterization of Pearson's Type II and VII Multivariate Distributions," Journal of Multivariate Analysis, Elsevier, vol. 71(1), pages 67-75, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carol Alexander & José María Sarabia, 2012. "Quantile Uncertainty and Value‐at‐Risk Model Risk," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1293-1308, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zografos, K. & Nadarajah, S., 2005. "Expressions for Rényi and Shannon entropies for multivariate distributions," Statistics & Probability Letters, Elsevier, vol. 71(1), pages 71-84, January.
    2. Carol Alexander & José María Sarabia, 2012. "Quantile Uncertainty and Value‐at‐Risk Model Risk," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1293-1308, August.
    3. Daya K. Nagar & Saralees Nadarajah & Idika E. Okorie, 2017. "A New Bivariate Distribution with One Marginal Defined on the Unit Interval," Annals of Data Science, Springer, vol. 4(3), pages 405-420, September.
    4. Leonenko, Nikolaj & Seleznjev, Oleg, 2010. "Statistical inference for the [epsilon]-entropy and the quadratic Rényi entropy," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 1981-1994, October.
    5. Ebrahimi, Nader & Soofi, Ehsan S. & Soyer, Refik, 2008. "Multivariate maximum entropy identification, transformation, and dependence," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1217-1231, July.
    6. Contreras-Reyes, Javier E., 2014. "Asymptotic form of the Kullback–Leibler divergence for multivariate asymmetric heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 200-208.
    7. Khaledi, Baha-Eldin & Shaked, Moshe, 2010. "Stochastic comparisons of multivariate mixtures," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2486-2498, November.
    8. Colangelo Antonio, 2005. "Multivariate hazard orderings of discrete random vectors," Economics and Quantitative Methods qf05010, Department of Economics, University of Insubria.
    9. Chi, Chang Koo & Murto, Pauli & Valimaki, Juuso, 2017. "All-Pay Auctions with Affiliated Values," MPRA Paper 80799, University Library of Munich, Germany.
    10. Arnaud Costinot & Jonathan Vogel, 2010. "Matching and Inequality in the World Economy," Journal of Political Economy, University of Chicago Press, vol. 118(4), pages 747-786, August.
    11. Rinott, Yosef & Scarsini, Marco, 2006. "Total positivity order and the normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1251-1261, May.
    12. Jones, M.C. & Marchand, Éric, 2019. "Multivariate discrete distributions via sums and shares," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 83-93.
    13. repec:dau:papers:123456789/698 is not listed on IDEAS
    14. Vikram Krishnamurthy & Udit Pareek, 2015. "Myopic Bounds for Optimal Policy of POMDPs: An Extension of Lovejoy’s Structural Results," Operations Research, INFORMS, vol. 63(2), pages 428-434, April.
    15. Ilse Lindenlaub & Fabien Postel-Vinay, 2023. "Multidimensional Sorting under Random Search," Journal of Political Economy, University of Chicago Press, vol. 131(12), pages 3497-3539.
    16. Baha-Eldin Khaledi & Subhash Kochar, 2001. "Dependence Properties of Multivariate Mixture Distributions and Their Applications," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(3), pages 620-630, September.
    17. Müller, Alfred & Scarsini, Marco, 2005. "Archimedean copulæ and positive dependence," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 434-445, April.
    18. Arnaud Costinot, 2009. "An Elementary Theory of Comparative Advantage," Econometrica, Econometric Society, vol. 77(4), pages 1165-1192, July.
    19. Barmalzan, Ghobad & Akrami, Abbas & Balakrishnan, Narayanaswamy, 2020. "Stochastic comparisons of the smallest and largest claim amounts with location-scale claim severities," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 341-352.
    20. Denuit, Michel & Robert, Christian Y., 2020. "Conditional tail expectation decomposition and conditional mean risk sharing for dependent and conditionally independent risks," LIDAM Discussion Papers ISBA 2020018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    21. Junbo Son & Yeongin Kim & Shiyu Zhou, 2022. "Alerting patients via health information system considering trust-dependent patient adherence," Information Technology and Management, Springer, vol. 23(4), pages 245-269, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:6:p:1272-1283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.