IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v63y1997i2p277-295.html
   My bibliography  Save this article

On Domains of Attraction of Multivariate Extreme Value Distributions under Absolute Continuity

Author

Listed:
  • Yun, Seokhoon

Abstract

The paper gives sufficient conditions for domains of attraction of multivariate extreme value distributions. Under the assumption of absolute continuity of a multivariate distribution, the criteria enable one to examine, by using limits of some rescaled conditional densities, whether the distribution belongs to the domain of attraction of some multivariate extreme value distribution. If this is the case, the criteria also determine how to construct such an extreme value distribution. Unlike the criterion given by de Haan and Resnick [1987,Stochastic Process. Appl.2583-93], the criteria are easily applicable even when the marginal tails are not Pareto-like.

Suggested Citation

  • Yun, Seokhoon, 1997. "On Domains of Attraction of Multivariate Extreme Value Distributions under Absolute Continuity," Journal of Multivariate Analysis, Elsevier, vol. 63(2), pages 277-295, November.
  • Handle: RePEc:eee:jmvana:v:63:y:1997:i:2:p:277-295
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(97)91706-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joe, Harry, 1990. "Families of min-stable multivariate exponential and multivariate extreme value distributions," Statistics & Probability Letters, Elsevier, vol. 9(1), pages 75-81, January.
    2. de Haan, L. & Omey, E. & Resnick, S., 1984. "Domains of attraction and regular variation in IRd," Journal of Multivariate Analysis, Elsevier, vol. 14(1), pages 17-33, February.
    3. de Haan, L. & Resnick, S., 1987. "On regular variation of probability densities," Stochastic Processes and their Applications, Elsevier, vol. 25, pages 83-93.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bouye, Eric & Durlleman, Valdo & Nikeghbali, Ashkan & Riboulet, Gaël & Roncalli, Thierry, 2000. "Copulas for finance," MPRA Paper 37359, University Library of Munich, Germany.
    2. Capéraà, Philippe & Fougères, Anne-Laure & Genest, Christian, 2000. "Bivariate Distributions with Given Extreme Value Attractor," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 30-49, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiandong Wang & Sidney I. Resnick, 2018. "Multivariate Regular Variation of Discrete Mass Functions with Applications to Preferential Attachment Networks," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 1029-1042, September.
    2. Bücher Axel, 2014. "A note on nonparametric estimation of bivariate tail dependence," Statistics & Risk Modeling, De Gruyter, vol. 31(2), pages 151-162, June.
    3. Bikramjit Das & Tiandong Wang & Gengling Dai, 2022. "Asymptotic Behavior of Common Connections in Sparse Random Networks," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2071-2092, September.
    4. Yi He & John H. J. Einmahl, 2017. "Estimation of extreme depth-based quantile regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 449-461, March.
    5. Das, Bikramjit & Fasen-Hartmann, Vicky, 2024. "On heavy-tailed risks under Gaussian copula: The effects of marginal transformation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    6. Peng, Liang, 2002. "Asymptotic expansions of densities of sums of random vectors without third moment," Statistics & Probability Letters, Elsevier, vol. 58(2), pages 167-174, June.
    7. Li, Haijun & Wu, Peiling, 2013. "Extremal dependence of copulas: A tail density approach," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 99-111.
    8. Vysotsky, Vladislav, 2010. "On the probability that integrated random walks stay positive," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1178-1193, July.
    9. Bücher, Axel & Dette, Holger & Volgushev, Stanislav, 2012. "A test for Archimedeanity in bivariate copula models," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 121-132.
    10. Kiriliouk, Anna & Segers, Johan & Tafakori, Laleh, 2018. "An estimator of the stable tail dependence function based on the empirical beta copula," LIDAM Discussion Papers ISBA 2018029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Li, Haijun & Hua, Lei, 2015. "Higher order tail densities of copulas and hidden regular variation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 143-155.
    12. Padoan, Simone A., 2011. "Multivariate extreme models based on underlying skew-t and skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 977-991, May.
    13. Mothafer, Ghasak I.M.A. & Yamamoto, Toshiyuki & Shankar, Venkataraman N., 2018. "A multivariate heterogeneous-dispersion count model for asymmetric interdependent freeway crash types," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 84-105.
    14. Kiriliouk, Anna & Lee, Jeongjin & Segers, Johan, 2023. "X-Vine Models for Multivariate Extremes," LIDAM Discussion Papers ISBA 2023038, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Belzile, Léo R. & Nešlehová, Johanna G., 2017. "Extremal attractors of Liouville copulas," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 68-92.
    16. Omey, Edward & Van Gulck, Stefan, 2015. "Intuitive approximations in discrete renewal theory, Part 1: Regularly varying case," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 68-74.
    17. Cai, J., 2012. "Estimation concerning risk under extreme value conditions," Other publications TiSEM a92b089f-bc4c-41c2-b297-c, Tilburg University, School of Economics and Management.
    18. Omey, Edward & Vesilo, R., 2009. "Random Sums of Random Variables and Vectors," Working Papers 2009/09, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    19. Anand Deo & Karthyek Murthy, 2020. "Optimizing tail risks using an importance sampling based extrapolation for heavy-tailed objectives," Papers 2008.09818, arXiv.org.
    20. Arbia, Giuseppe & Lafratta, Giovanni & Simeoni, Carla, 2007. "Spatial sampling plans to monitor the 3-D spatial distribution of extremes in soil pollution surveys," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 4069-4082, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:63:y:1997:i:2:p:277-295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.