IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2008.09818.html
   My bibliography  Save this paper

Optimizing tail risks using an importance sampling based extrapolation for heavy-tailed objectives

Author

Listed:
  • Anand Deo
  • Karthyek Murthy

Abstract

Motivated by the prominence of Conditional Value-at-Risk (CVaR) as a measure for tail risk in settings affected by uncertainty, we develop a new formula for approximating CVaR based optimization objectives and their gradients from limited samples. A key difficulty that limits the widespread practical use of these optimization formulations is the large amount of data required by the state-of-the-art sample average approximation schemes to approximate the CVaR objective with high fidelity. Unlike the state-of-the-art sample average approximations which require impractically large amounts of data in tail probability regions, the proposed approximation scheme exploits the self-similarity of heavy-tailed distributions to extrapolate data from suitable lower quantiles. The resulting approximations are shown to be statistically consistent and are amenable for optimization by means of conventional gradient descent. The approximation is guided by means of a systematic importance-sampling scheme whose asymptotic variance reduction properties are rigorously examined. Numerical experiments demonstrate the superiority of the proposed approximations and the ease of implementation points to the versatility of settings to which the approximation scheme can be applied.

Suggested Citation

  • Anand Deo & Karthyek Murthy, 2020. "Optimizing tail risks using an importance sampling based extrapolation for heavy-tailed objectives," Papers 2008.09818, arXiv.org.
  • Handle: RePEc:arx:papers:2008.09818
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2008.09818
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rootzen, Holger & Segers, Johan & Wadsworth, Jennifer, 2018. "Multivariate peaks over thresholds models," LIDAM Reprints ISBA 2018005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. O. Scaillet, 2004. "Nonparametric Estimation and Sensitivity Analysis of Expected Shortfall," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 115-129, January.
    3. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    4. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2002. "Portfolio Value‐at‐Risk with Heavy‐Tailed Risk Factors," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 239-269, July.
    5. de Haan, L. & Resnick, S., 1987. "On regular variation of probability densities," Stochastic Processes and their Applications, Elsevier, vol. 25, pages 83-93.
    6. Georg Mainik & Ludger Rüschendorf, 2010. "On optimal portfolio diversification with respect to extreme risks," Finance and Stochastics, Springer, vol. 14(4), pages 593-623, December.
    7. Andrzej Ruszczyński & Alexander Shapiro, 2006. "Optimization of Convex Risk Functions," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 433-452, August.
    8. Gah-Yi Ban & Noureddine El Karoui & Andrew E. B. Lim, 2018. "Machine Learning and Portfolio Optimization," Management Science, INFORMS, vol. 64(3), pages 1136-1154, March.
    9. L. Jeff Hong & Guangwu Liu, 2009. "Simulating Sensitivities of Conditional Value at Risk," Management Science, INFORMS, vol. 55(2), pages 281-293, February.
    10. Fabio Caccioli & Imre Kondor & Gábor Papp, 2018. "Portfolio optimization under Expected Shortfall: contour maps of estimation error," Quantitative Finance, Taylor & Francis Journals, vol. 18(8), pages 1295-1313, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anand Deo & Karthyek Murthy, 2021. "Efficient Black-Box Importance Sampling for VaR and CVaR Estimation," Papers 2106.10236, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kellner, Ralf & Rösch, Daniel, 2016. "Quantifying market risk with Value-at-Risk or Expected Shortfall? – Consequences for capital requirements and model risk," Journal of Economic Dynamics and Control, Elsevier, vol. 68(C), pages 45-63.
    2. Arismendi, Juan C. & Broda, Simon, 2017. "Multivariate elliptical truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 29-44.
    3. Aigner, Philipp & Schlütter, Sebastian, 2023. "Enhancing gradient capital allocation with orthogonal convexity scenarios," ICIR Working Paper Series 47/23, Goethe University Frankfurt, International Center for Insurance Regulation (ICIR).
    4. Das, Bikramjit & Fasen-Hartmann, Vicky, 2024. "On heavy-tailed risks under Gaussian copula: The effects of marginal transformation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    5. Huang, Jinbo & Ding, Ashley & Li, Yong & Lu, Dong, 2020. "Increasing the risk management effectiveness from higher accuracy: A novel non-parametric method," Pacific-Basin Finance Journal, Elsevier, vol. 62(C).
    6. Xia Han & Liyuan Lin & Ruodu Wang, 2022. "Diversification quotients: Quantifying diversification via risk measures," Papers 2206.13679, arXiv.org, revised Jul 2024.
    7. repec:cte:wsrepe:38369 is not listed on IDEAS
    8. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    9. Xia Han & Liyuan Lin & Ruodu Wang, 2023. "Diversification quotients based on VaR and ES," Papers 2301.03517, arXiv.org, revised May 2023.
    10. Han, Xia & Lin, Liyuan & Wang, Ruodu, 2023. "Diversification quotients based on VaR and ES," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 185-197.
    11. Cui, Hengxin & Tan, Ken Seng & Yang, Fan & Zhou, Chen, 2022. "Asymptotic analysis of portfolio diversification," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 302-325.
    12. L. Jeff Hong & Guangwu Liu, 2009. "Simulating Sensitivities of Conditional Value at Risk," Management Science, INFORMS, vol. 55(2), pages 281-293, February.
    13. Claudia Klüppelberg & Miriam Isabel Seifert, 2019. "Financial risk measures for a network of individual agents holding portfolios of light-tailed objects," Finance and Stochastics, Springer, vol. 23(4), pages 795-826, October.
    14. He, Zhijian, 2022. "Sensitivity estimation of conditional value at risk using randomized quasi-Monte Carlo," European Journal of Operational Research, Elsevier, vol. 298(1), pages 229-242.
    15. Roger Bowden, 2010. "Directional entropy and tail uncertainty, with applications to financial hazard," Quantitative Finance, Taylor & Francis Journals, vol. 11(3), pages 437-446.
    16. Wei Jiang & Steven Kou, 2021. "Simulating risk measures via asymptotic expansions for relative errors," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 907-942, July.
    17. Paulusch, Joachim & Schlütter, Sebastian, 2022. "Sensitivity-implied tail-correlation matrices," Journal of Banking & Finance, Elsevier, vol. 134(C).
    18. Xiangqian Sun & Xing Yan & Qi Wu, 2020. "Generative Learning of Heterogeneous Tail Dependence," Papers 2011.13132, arXiv.org, revised Nov 2023.
    19. Shi, Xiaojun & Tang, Qihe & Yuan, Zhongyi, 2017. "A limit distribution of credit portfolio losses with low default probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 156-167.
    20. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    21. John H. J. Einmahl & Fan Yang & Chen Zhou, 2021. "Testing the Multivariate Regular Variation Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 907-919, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2008.09818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.