IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v203y2024ics0047259x24000423.html
   My bibliography  Save this article

Tensor recovery in high-dimensional Ising models

Author

Listed:
  • Liu, Tianyu
  • Mukherjee, Somabha
  • Biswas, Rahul

Abstract

The k-tensor Ising model is a multivariate exponential family on a p-dimensional binary hypercube for modeling dependent binary data, where the sufficient statistic consists of all k-fold products of the observations, and the parameter is an unknown k-fold tensor, designed to capture higher-order interactions between the binary variables. In this paper, we describe an approach based on a penalization technique that helps us recover the signed support of the tensor parameter with high probability, assuming that no entry of the true tensor is too close to zero. The method is based on an ℓ1-regularized node-wise logistic regression, that recovers the signed neighborhood of each node with high probability. Our analysis is carried out in the high-dimensional regime, that allows the dimension p of the Ising model, as well as the interaction factor k to potentially grow to ∞ with the sample size n. We show that if the minimum interaction strength is not too small, then consistent recovery of the entire signed support is possible if one takes n=Ω((k!)8d3logp−1k−1) samples, where d denotes the maximum degree of the hypernetwork in question. Our results are validated in two simulation settings, and applied on a real neurobiological dataset consisting of multi-array electro-physiological recordings from the mouse visual cortex, to model higher-order interactions between the brain regions.

Suggested Citation

  • Liu, Tianyu & Mukherjee, Somabha & Biswas, Rahul, 2024. "Tensor recovery in high-dimensional Ising models," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:jmvana:v:203:y:2024:i:c:s0047259x24000423
    DOI: 10.1016/j.jmva.2024.105335
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X24000423
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105335?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Spirtes & Clark Glymour & Richard Scheines, 2001. "Causation, Prediction, and Search, 2nd Edition," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262194406, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bettendorf, Timo & Heinlein, Reinhold, 2019. "Connectedness between G10 currencies: Searching for the causal structure," Discussion Papers 06/2019, Deutsche Bundesbank.
    2. Maarten J. Bijlsma & Rhian M. Daniel & Fanny Janssen & Bianca L. De Stavola, 2017. "An Assessment and Extension of the Mechanism-Based Approach to the Identification of Age-Period-Cohort Models," Demography, Springer;Population Association of America (PAA), vol. 54(2), pages 721-743, April.
    3. Stimel Derek, 2009. "A Statistical Analysis of NFL Quarterback Rating Variables," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(2), pages 1-26, May.
    4. Klimova, Anna & Uhler, Caroline & Rudas, Tamás, 2015. "Faithfulness and learning hypergraphs from discrete distributions," Computational Statistics & Data Analysis, Elsevier, vol. 87(C), pages 57-72.
    5. Tyler J. VanderWeele, 2011. "Sensitivity Analysis for Contagion Effects in Social Networks," Sociological Methods & Research, , vol. 40(2), pages 240-255, May.
    6. Heckman, James & Pinto, Rodrigo, 2024. "Econometric causality: The central role of thought experiments," Journal of Econometrics, Elsevier, vol. 243(1).
    7. Huang, Wei & Lai, Pei-Chun & Bessler, David A., 2018. "On the changing structure among Chinese equity markets: Hong Kong, Shanghai, and Shenzhen," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1020-1032.
    8. Maarten J. Bijlsma & Rhian Daniel & Fanny Janssen & Bianca De Stavola, 2016. "An assessment and extension of the mechanism-based approach to the identification of age-period-cohort models," MPIDR Working Papers WP-2016-005, Max Planck Institute for Demographic Research, Rostock, Germany.
    9. Steven Sheffrin & Rujun Zhao, 2021. "Public perceptions of the tax avoidance of corporations and the wealthy," Empirical Economics, Springer, vol. 61(1), pages 259-277, July.
    10. Selva Demiralp & Kevin Hoover & Stephen Perez, 2014. "Still puzzling: evaluating the price puzzle in an empirically identified structural vector autoregression," Empirical Economics, Springer, vol. 46(2), pages 701-731, March.
    11. Bareinboim Elias & Pearl Judea, 2013. "A General Algorithm for Deciding Transportability of Experimental Results," Journal of Causal Inference, De Gruyter, vol. 1(1), pages 107-134, June.
    12. Chen, Pu & Hsiao, Chih-Ying, 2008. "What happens to Japan if China catches a cold?: A causal analysis of Chinese growth and Japanese growth," Japan and the World Economy, Elsevier, vol. 20(4), pages 622-638, December.
    13. Chen, Pu & Chihying, Hsiao, 2007. "Learning Causal Relations in Multivariate Time Series Data," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 1, pages 1-43.
    14. Kaiyue Liu & Lihua Liu & Kaiming Xiao & Xuan Li & Hang Zhang & Yun Zhou & Hongbin Huang, 2024. "CL-NOTEARS: Continuous Optimization Algorithm Based on Curriculum Learning Framework," Mathematics, MDPI, vol. 12(17), pages 1-22, August.
    15. Hao Li & Jianjun Zhan & Haosen Wang & Zipeng Zhao, 2024. "A Novel Ensemble Method of Divide-and-Conquer Markov Boundary Discovery for Causal Feature Selection," Mathematics, MDPI, vol. 12(18), pages 1-21, September.
    16. Ruijie Tang, 2024. "Trading with Time Series Causal Discovery: An Empirical Study," Papers 2408.15846, arXiv.org, revised Aug 2024.
    17. Benjamin A Logsdon & Jason Mezey, 2010. "Gene Expression Network Reconstruction by Convex Feature Selection when Incorporating Genetic Perturbations," PLOS Computational Biology, Public Library of Science, vol. 6(12), pages 1-13, December.
    18. Xingyu Liao & Xiaoping Liu, 2024. "Hidden Variable Discovery Based on Regression and Entropy," Mathematics, MDPI, vol. 12(9), pages 1-16, April.
    19. Álvaro Martínez-Sánchez & Gonzalo Arranz & Adrián Lozano-Durán, 2024. "Decomposing causality into its synergistic, unique, and redundant components," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Behnam Azhdari & Jean Bonnet & Sébastien Bourdin, 2022. "Towards a Causal Model and Causal Inference of Regional Entrepreneurship Development Index, its antecedents and outcomes in European regions," Economics Working Paper Archive (University of Rennes & University of Caen) 2022-06, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:203:y:2024:i:c:s0047259x24000423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.