IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v203y2024ics0047259x24000307.html
   My bibliography  Save this article

Bayesian inference of graph-based dependencies from mixed-type data

Author

Listed:
  • Galimberti, Chiara
  • Peluso, Stefano
  • Castelletti, Federico

Abstract

Mixed data comprise measurements of different types, with both categorical and continuous variables, and can be found in various areas, such as in life science or industrial processes. Inferring conditional independencies from the data is crucial to understand how these variables relate to each other. To this end, graphical models provide an effective framework, which adopts a graph-based representation of the joint distribution to encode such dependence relations. This framework has been extensively studied in the Gaussian and categorical settings separately; on the other hand, the literature addressing this problem in presence of mixed data is still narrow. We propose a Bayesian model for the analysis of mixed data based on the notion of Conditional Gaussian (CG) distribution. Our method is based on a canonical parameterization of the CG distribution, which allows for posterior inference of parameters indexing the (marginal) distributions of continuous and categorical variables, as well as expressing the interactions between the two types of variables. We derive the limiting Gaussian distributions, centered on the correct unknown value and with vanishing variance, for the Bayesian estimators of the canonical parameters expressing continuous, discrete and mixed interactions. In addition, we implement the proposed method for structure learning purposes, namely to infer the underlying graph of conditional independencies. When compared to alternative frequentist methods, our approach shows favorable results both in a simulation setting and in real-data applications, besides allowing for a coherent uncertainty quantification around parameter estimates.

Suggested Citation

  • Galimberti, Chiara & Peluso, Stefano & Castelletti, Federico, 2024. "Bayesian inference of graph-based dependencies from mixed-type data," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:jmvana:v:203:y:2024:i:c:s0047259x24000307
    DOI: 10.1016/j.jmva.2024.105323
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X24000307
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:203:y:2024:i:c:s0047259x24000307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.