IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v202y2024ics0047259x2400023x.html
   My bibliography  Save this article

Sparse online regression algorithm with insensitive loss functions

Author

Listed:
  • Hu, Ting
  • Xiong, Jing

Abstract

Online learning is an efficient approach in machine learning and statistics, which iteratively updates models upon the observation of a sequence of training examples. A representative online learning algorithm is the online gradient descent, which has found wide applications due to its low complexity and scalability to large datasets. Kernel-based learning methods have been proven to be quite successful in dealing with nonlinearity in the data and multivariate optimization. In this paper we present a class of kernel-based online gradient descent algorithm for addressing regression problems, which generates sparse estimators in an iterative way to reduce the algorithmic complexity for training streaming datasets and model selection in large-scale learning scenarios. In the setting of support vector regression (SVR), we design the sparse online learning algorithm by introducing a sequence of insensitive distance-based loss functions. We prove consistency and error bounds quantifying the generalization performance of such algorithms under mild conditions. The theoretical results demonstrate the interplay between statistical accuracy and sparsity property during learning processes. We show that the insensitive parameter plays a crucial role in providing sparsity as well as fast convergence rates. The numerical experiments also support our theoretical results.

Suggested Citation

  • Hu, Ting & Xiong, Jing, 2024. "Sparse online regression algorithm with insensitive loss functions," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:jmvana:v:202:y:2024:i:c:s0047259x2400023x
    DOI: 10.1016/j.jmva.2024.105316
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X2400023X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    2. Liang, Xijun & Zhang, Zhipeng & Song, Yunquan & Jian, Ling, 2022. "Kernel-based online regression with canal loss," European Journal of Operational Research, Elsevier, vol. 297(1), pages 268-279.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    2. Benjamin Hofner & Andreas Mayr & Nikolay Robinzonov & Matthias Schmid, 2014. "Model-based boosting in R: a hands-on tutorial using the R package mboost," Computational Statistics, Springer, vol. 29(1), pages 3-35, February.
    3. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    4. Muller, Christophe, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
    5. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    6. Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
    7. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    8. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    9. Klaus Friesenbichler, 2013. "Firm Growth in Conflict Countries: Some Evidence from South Asia," Review of Economics & Finance, Better Advances Press, Canada, vol. 3, pages 33-44, May.
    10. Chesher, Andrew, 2017. "Understanding the effect of measurement error on quantile regressions," Journal of Econometrics, Elsevier, vol. 200(2), pages 223-237.
    11. Park, Beum-Jo & Kim, Myung-Joong, 2017. "A Dynamic Measure of Intentional Herd Behavior in Financial Markets," MPRA Paper 82025, University Library of Munich, Germany.
    12. de Chaisemartin, Clement & D'Haultfoeuille, Xavier, "undated". "Supplement to Fuzzy Differences-in-Differences," Economic Research Papers 270217, University of Warwick - Department of Economics.
    13. Andrés Barge-Gil & Alberto López, 2015. "R versus D: estimating the differentiated effect of research and development on innovation results," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 24(1), pages 93-129.
    14. Kleopatra Nikolaou, 2007. "The behaviour of the real exchange rate: Evidence from regression quantiles," Money Macro and Finance (MMF) Research Group Conference 2006 46, Money Macro and Finance Research Group.
    15. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    16. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    17. Jean-Marc Fournier & Isabell Koske, 2012. "The determinants of earnings inequality: evidence from quantile regressions," OECD Journal: Economic Studies, OECD Publishing, vol. 2012(1), pages 7-36.
    18. Michael D. Bordo & Pierre L. Siklos, 2017. "Central Bank Credibility before and after the Crisis," Open Economies Review, Springer, vol. 28(1), pages 19-45, February.
    19. Feng, Zhenghui & Wang, Tao & Zhu, Lixing, 2014. "Transformation-based estimation," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 186-205.
    20. Kangning Wang & Lu Lin, 2017. "Robust and efficient direction identification for groupwise additive multiple-index models and its applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 22-45, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:202:y:2024:i:c:s0047259x2400023x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.