Sparse online regression algorithm with insensitive loss functions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2024.105316
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Koenker,Roger, 2005.
"Quantile Regression,"
Cambridge Books,
Cambridge University Press, number 9780521845731, September.
- Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521608275, October.
- Liang, Xijun & Zhang, Zhipeng & Song, Yunquan & Jian, Ling, 2022. "Kernel-based online regression with canal loss," European Journal of Operational Research, Elsevier, vol. 297(1), pages 268-279.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019.
"Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Papers 1312.7186, arXiv.org, revised Jun 2016.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Valid post-selection inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers CWP53/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Valid post-selection inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers 53/14, Institute for Fiscal Studies.
- Benjamin Hofner & Andreas Mayr & Nikolay Robinzonov & Matthias Schmid, 2014. "Model-based boosting in R: a hands-on tutorial using the R package mboost," Computational Statistics, Springer, vol. 29(1), pages 3-35, February.
- Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018.
"Asset allocation strategies based on penalized quantile regression,"
Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
- Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2015. "Asset Allocation Strategies Based on Penalized Quantile Regression," Papers 1507.00250, arXiv.org.
- Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2015. "Asset Allocation Strategies Based On Penalized Quantile Regression," "Marco Fanno" Working Papers 0199, Dipartimento di Scienze Economiche "Marco Fanno".
- Muller, Christophe, 2018.
"Heterogeneity and nonconstant effect in two-stage quantile regression,"
Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
- Christophe Muller, 2017. "Heterogeneity and Non-Constant Effect in Two-Stage Quantile Regression," Working Papers halshs-01157552, HAL.
- Christophe Muller, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Post-Print hal-01647474, HAL.
- Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
- Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
- Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
- Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024.
"Daily growth at risk: Financial or real drivers? The answer is not always the same,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
- Helena Chuliá & Ignacio Garrón & Jorge M. Uribe, 2022. ""Daily Growth at Risk: financial or real drivers? The answer is not always the same"," IREA Working Papers 202208, University of Barcelona, Research Institute of Applied Economics, revised Jun 2022.
- Klaus Friesenbichler, 2013. "Firm Growth in Conflict Countries: Some Evidence from South Asia," Review of Economics & Finance, Better Advances Press, Canada, vol. 3, pages 33-44, May.
- Chesher, Andrew, 2017.
"Understanding the effect of measurement error on quantile regressions,"
Journal of Econometrics, Elsevier, vol. 200(2), pages 223-237.
- Andrew Chesher, 2017. "Understanding the effect of measurement error on quantile regressions," CeMMAP working papers 19/17, Institute for Fiscal Studies.
- Andrew Chesher, 2017. "Understanding the effect of measurement error on quantile regressions," CeMMAP working papers CWP19/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Park, Beum-Jo & Kim, Myung-Joong, 2017. "A Dynamic Measure of Intentional Herd Behavior in Financial Markets," MPRA Paper 82025, University Library of Munich, Germany.
- de Chaisemartin, Clement & D'Haultfoeuille, Xavier, "undated".
"Supplement to Fuzzy Differences-in-Differences,"
Economic Research Papers
270217, University of Warwick - Department of Economics.
- de Chaisemartin, Clement & D'Haultfoeuille, Xavier, 2015. "Supplement to Fuzzy Differences-in-Differences," The Warwick Economics Research Paper Series (TWERPS) 1066, University of Warwick, Department of Economics.
- Andrés Barge-Gil & Alberto López, 2015.
"R versus D: estimating the differentiated effect of research and development on innovation results,"
Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 24(1), pages 93-129.
- Barge-Gil, Andrés & López, Alberto, 2011. "R versus D: Estimating the differentiated effect of research and development on innovation results," MPRA Paper 29091, University Library of Munich, Germany.
- Kleopatra Nikolaou, 2007. "The behaviour of the real exchange rate: Evidence from regression quantiles," Money Macro and Finance (MMF) Research Group Conference 2006 46, Money Macro and Finance Research Group.
- Chen, Xiaohong & Pouzo, Demian, 2009.
"Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals,"
Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
- Xiaohong Chen & Demian Pouzo, 2008. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," CeMMAP working papers CWP09/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Xiaohong Chen & Demian Pouzo, 2008. "Efficient Estimation of Semiparametric Conditional Moment Models with Possibly Nonsmooth Residuals," Cowles Foundation Discussion Papers 1640R, Cowles Foundation for Research in Economics, Yale University, revised Jul 2009.
- Chen, Xiaohong & Pouzo, Demian, 2008. "Efficient Estimation of Semiparametric Conditional Moment Models with Possibly Nonsmooth Residuals," Working Papers 38, Yale University, Department of Economics.
- Xiaohong Chen & Demian Pouzo, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," CeMMAP working papers CWP20/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Parente, Paulo M.D.C. & Smith, Richard J., 2011.
"Gel Methods For Nonsmooth Moment Indicators,"
Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
- Paulo Parente & Richard Smith, 2008. "GEL methods for non-smooth moment indicators," CeMMAP working papers CWP19/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Jean-Marc Fournier & Isabell Koske, 2012. "The determinants of earnings inequality: evidence from quantile regressions," OECD Journal: Economic Studies, OECD Publishing, vol. 2012(1), pages 7-36.
- Michael D. Bordo & Pierre L. Siklos, 2017.
"Central Bank Credibility before and after the Crisis,"
Open Economies Review, Springer, vol. 28(1), pages 19-45, February.
- Michael D. Bordo & Pierre L. Siklos, 2015. "Central bank Credibility Before and After the Crisis," NBER Working Papers 21710, National Bureau of Economic Research, Inc.
- Feng, Zhenghui & Wang, Tao & Zhu, Lixing, 2014. "Transformation-based estimation," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 186-205.
- Kangning Wang & Lu Lin, 2017. "Robust and efficient direction identification for groupwise additive multiple-index models and its applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 22-45, March.
More about this item
Keywords
Insensitive loss; Online learning; Quantile regression; Reproducing kernel Hilbert space; Sparsity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:202:y:2024:i:c:s0047259x2400023x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.