IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v128y2018i8p2816-2855.html
   My bibliography  Save this article

Asymptotics for high-dimensional covariance matrices and quadratic forms with applications to the trace functional and shrinkage

Author

Listed:
  • Steland, Ansgar
  • von Sachs, Rainer

Abstract

We establish large sample approximations for an arbitrary number of bilinear forms of the sample variance–covariance matrix of a high-dimensional vector time series using ℓ1-bounded and small ℓ2-bounded weighting vectors. Estimation of the asymptotic covariance structure is also discussed. The results hold true without any constraint on the dimension, the number of forms and the sample size or their ratios. Concrete and potential applications are widespread and cover high-dimensional data science problems such as tests for large numbers of covariances, sparse portfolio optimization and projections onto sparse principal components or more general spanning sets as frequently considered, e.g. in classification and dictionary learning. As two specific applications of our results, we study in greater detail the asymptotics of the trace functional and shrinkage estimation of covariance matrices. In shrinkage estimation, it turns out that the asymptotics differ for weighting vectors bounded away from orthogonality and nearly orthogonal ones in the sense that their inner product converges to 0.

Suggested Citation

  • Steland, Ansgar & von Sachs, Rainer, 2018. "Asymptotics for high-dimensional covariance matrices and quadratic forms with applications to the trace functional and shrinkage," Stochastic Processes and their Applications, Elsevier, vol. 128(8), pages 2816-2855.
  • Handle: RePEc:eee:spapps:v:128:y:2018:i:8:p:2816-2855
    DOI: 10.1016/j.spa.2017.10.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414917302582
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2017.10.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Liu, Weidong & Lin, Zhengyan, 2009. "Strong approximation for a class of stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 119(1), pages 249-280, January.
    3. Mark Fiecas & Jürgen Franke & Rainer von Sachs & Joseph Tadjuidje Kamgaing, 2017. "Shrinkage Estimation for Multivariate Hidden Markov Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 424-435, January.
    4. Kouritzin, Michael A., 1995. "Strong approximation for cross-covariances of linear variables with long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 60(2), pages 343-353, December.
    5. Kollo, T. & Neudecker, H., 1993. "Asymptotics of Eigenvalues and Unit-Length Eigenvectors of Sample Variance and Correlation Matrices," Journal of Multivariate Analysis, Elsevier, vol. 47(2), pages 283-300, November.
    6. Steland, Ansgar & von Sachs, Rainer, 2017. "Large-Sample Approximations for Variance-Covariance Matrices of High-Dimensional Time Series," LIDAM Reprints ISBA 2017015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Sancetta, Alessio, 2008. "Sample covariance shrinkage for high dimensional dependent data," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 949-967, May.
    8. Jirak, Moritz, 2012. "Change-point analysis in increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 136-159.
    9. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    10. Biao Wu, Wei & Min, Wanli, 2005. "On linear processes with dependent innovations," Stochastic Processes and their Applications, Elsevier, vol. 115(6), pages 939-958, June.
    11. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steland, Ansgar, 2020. "Testing and estimating change-points in the covariance matrix of a high-dimensional time series," Journal of Multivariate Analysis, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steland, Ansgar & von Sachs, Rainer, 2016. "Asymptotics for High–Dimensional Covariance Matrices and Quadratic Forms with Applications to the Trace Functional and Shrinkage," LIDAM Discussion Papers ISBA 2016038, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Steland, Ansgar, 2020. "Testing and estimating change-points in the covariance matrix of a high-dimensional time series," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    3. Ansgar Steland, 2018. "Shrinkage for covariance estimation: asymptotics, confidence intervals, bounds and applications in sensor monitoring and finance," Statistical Papers, Springer, vol. 59(4), pages 1441-1462, December.
    4. Tae-Hwy Lee & Ekaterina Seregina, 2020. "Learning from Forecast Errors: A New Approach to Forecast Combination," Working Papers 202024, University of California at Riverside, Department of Economics.
    5. Jingying Yang, 2024. "Element Aggregation for Estimation of High-Dimensional Covariance Matrices," Mathematics, MDPI, vol. 12(7), pages 1-16, March.
    6. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
    7. Yuki Ikeda & Tatsuya Kubokawa, 2015. "Linear Shrinkage Estimation of Large Covariance Matrices with Use of Factor Models," CIRJE F-Series CIRJE-F-958, CIRJE, Faculty of Economics, University of Tokyo.
    8. Cubadda, Gianluca & Guardabascio, Barbara, 2019. "Representation, estimation and forecasting of the multivariate index-augmented autoregressive model," International Journal of Forecasting, Elsevier, vol. 35(1), pages 67-79.
    9. Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019. "A multiple testing approach to the regularisation of large sample correlation matrices," Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
    10. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    11. Ruili Sun & Tiefeng Ma & Shuangzhe Liu, 2018. "A Stein-type shrinkage estimator of the covariance matrix for portfolio selections," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(8), pages 931-952, November.
    12. Gillen, Benjamin J., 2014. "An empirical Bayesian approach to stein-optimal covariance matrix estimation," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 402-420.
    13. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    14. Ikeda, Yuki & Kubokawa, Tatsuya, 2016. "Linear shrinkage estimation of large covariance matrices using factor models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 61-81.
    15. Abadir, Karim M. & Distaso, Walter & Žikeš, Filip, 2014. "Design-free estimation of variance matrices," Journal of Econometrics, Elsevier, vol. 181(2), pages 165-180.
    16. Ding, Yi & Li, Yingying & Zheng, Xinghua, 2021. "High dimensional minimum variance portfolio estimation under statistical factor models," Journal of Econometrics, Elsevier, vol. 222(1), pages 502-515.
    17. Hafner, Christian M. & Linton, Oliver B. & Tang, Haihan, 2020. "Estimation of a multiplicative correlation structure in the large dimensional case," Journal of Econometrics, Elsevier, vol. 217(2), pages 431-470.
    18. Linton, O. & Tang, H., 2020. "Estimation of the Kronecker Covariance Model by Quadratic Form," Cambridge Working Papers in Economics 2050, Faculty of Economics, University of Cambridge.
    19. Härdle, Wolfgang & Klochkov, Yegor & Petukhina, Alla & Zhivotovskiy, Nikita, 2021. "Robustifying Markowitz," IRTG 1792 Discussion Papers 2021-018, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    20. Tatsuya Kubokawa & Muni S. Srivastava, 2013. "Optimal Ridge-type Estimators of Covariance Matrix in High Dimension," CIRJE F-Series CIRJE-F-906, CIRJE, Faculty of Economics, University of Tokyo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:128:y:2018:i:8:p:2816-2855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.