IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v198y2023ics0047259x23000751.html
   My bibliography  Save this article

A nonparametric test for paired data

Author

Listed:
  • Wyłupek, Grzegorz

Abstract

The paper proposes a weighted Kolmogorov–Smirnov type test for the two-sample problem for paired data. The asymptotic distribution of the test statistic under the null model is derived. The dependence of both the finite sample and the asymptotic distribution of the test statistic on the dependence structure of the data requires the use of the wild bootstrap technique for inference. The related wild bootstrap test turns out to be a consistent asymptotically level α test. With the finite sample correction applied, the test keeps the level well. An extensive simulation study demonstrates good finite sample behaviour of the test in comparison to the existing procedures. The main role in the proofs is played by tools from empirical processes. Additional simulation results, as well as an R code, which allow one to easily repeat the conducted numerical experiments, are attached as Supplementary Material.

Suggested Citation

  • Wyłupek, Grzegorz, 2023. "A nonparametric test for paired data," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:jmvana:v:198:y:2023:i:c:s0047259x23000751
    DOI: 10.1016/j.jmva.2023.105229
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X23000751
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2023.105229?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Jun, 2007. "Enjoy the Joy of Copulas: With a Package copula," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i04).
    2. Noguchi, Kimihiro & Gel, Yulia R. & Brunner, Edgar & Konietschke, Frank, 2012. "nparLD: An R Software Package for the Nonparametric Analysis of Longitudinal Data in Factorial Experiments," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 50(i12).
    3. Quessy, Jean-François & Éthier, François, 2012. "Cramér–von Mises and characteristic function tests for the two and k-sample problems with dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2097-2111.
    4. Brunner, Edgar & Munzel, Ulrich & Puri, Madan L., 1999. "Rank-Score Tests in Factorial Designs with Repeated Measures," Journal of Multivariate Analysis, Elsevier, vol. 70(2), pages 286-317, August.
    5. Luz Adriana Pereira & Daniel Taylor‐Rodríguez & Luis Gutiérrez, 2020. "A Bayesian nonparametric testing procedure for paired samples," Biometrics, The International Biometric Society, vol. 76(4), pages 1133-1146, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Friedrich, Sarah & Konietschke, Frank & Pauly, Markus, 2017. "A wild bootstrap approach for nonparametric repeated measurements," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 38-52.
    2. M.L. Nores & M.P. Díaz, 2016. "Bootstrap hypothesis testing in generalized additive models for comparing curves of treatments in longitudinal studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 810-826, April.
    3. Friedrich, Sarah & Pauly, Markus, 2018. "MATS: Inference for potentially singular and heteroscedastic MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 166-179.
    4. Jiménez-Gamero, M.D. & Alba-Fernández, M.V. & Jodrá, P. & Barranco-Chamorro, I., 2017. "Fast tests for the two-sample problem based on the empirical characteristic function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 137(C), pages 390-410.
    5. Miao, Ruiqing & Hennessy, David A. & Feng, Hongli, 2016. "The Effects of Crop Insurance Subsidies and Sodsaver on Land-Use Change," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 41(2), May.
    6. Pisit Leeahtam & Chukiat Chaiboonsri & Kanchana Chokethaworn & Prasert Chaitip & Songsak Sriboonchitta, 2011. "The Appropriate Model and Dependence Measures of Thailand’s Exchange Rate and Malaysia’s Exchange Rate: Linear, Nonlinear and Copulas Approach," Journal of Knowledge Management, Economics and Information Technology, ScientificPapers.org, vol. 1(6), pages 1-14, October.
    7. Majeed, Fahd & Khanna, Madhu & Miao, Ruiqing & Betes, Elena Blanc & Hudiburg, Tara & DeLucia, Evan, 2022. "Payment for carbon mitigation reduces riskiness of bioenergy crop production," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322277, Agricultural and Applied Economics Association.
    8. Ozonder, Gozde & Miller, Eric J., 2021. "Longitudinal investigation of skeletal activity episode timing decisions – A copula approach," Journal of choice modelling, Elsevier, vol. 40(C).
    9. Junker, Robert R. & Griessenberger, Florian & Trutschnig, Wolfgang, 2021. "Estimating scale-invariant directed dependence of bivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    10. Johan Verbeeck & Martin Geroldinger & Konstantin Thiel & Andrew Craig Hooker & Sebastian Ueckert & Mats Karlsson & Arne Cornelius Bathke & Johann Wolfgang Bauer & Geert Molenberghs & Georg Zimmermann, 2023. "How to analyze continuous and discrete repeated measures in small‐sample cross‐over trials?," Biometrics, The International Biometric Society, vol. 79(4), pages 3998-4011, December.
    11. Mohit Anand & Ruiqing Miao & Madhu Khanna, 2019. "Adopting bioenergy crops: Does farmers’ attitude toward loss matter?," Agricultural Economics, International Association of Agricultural Economists, vol. 50(4), pages 435-450, July.
    12. Jiří Dvořák & Tomáš Mrkvička, 2022. "Graphical tests of independence for general distributions," Computational Statistics, Springer, vol. 37(2), pages 671-699, April.
    13. Erlend Bø & Peter Lambert & Thor Thoresen, 2012. "Horizontal inequity under a dual income tax system: principles and measurement," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 19(5), pages 625-640, October.
    14. Hasler Mario, 2013. "Multiple Contrasts for Repeated Measures," The International Journal of Biostatistics, De Gruyter, vol. 9(1), pages 49-61, July.
    15. Lu, Teng & Liang, Dapeng & Hong, Mei, 2024. "Shaping future generosity: The role of injunctive social norms in intertemporal pro-social giving," Journal of Economic Psychology, Elsevier, vol. 102(C).
    16. Burchett, Woodrow W. & Ellis, Amanda R. & Harrar, Solomon W. & Bathke, Arne C., 2017. "Nonparametric Inference for Multivariate Data: The R Package npmv," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i04).
    17. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 22(2), pages 98-134.
    18. Celia M. Gagliardi & Marc E. Normandin & Alexandra T. Keinath & Joshua B. Julian & Matthew R. Lopez & Manuel-Miguel Ramos-Alvarez & Russell A. Epstein & Isabel A. Muzzio, 2024. "Distinct neural mechanisms for heading retrieval and context recognition in the hippocampus during spatial reorientation," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    19. Sebastian Domhof & Edgar Brunner & D. Wayne Osgood, 2002. "Rank Procedures for Repeated Measures with Missing Values," Sociological Methods & Research, , vol. 30(3), pages 367-393, February.
    20. Zdeněk Hlávka & Marie Hušková & Simos G. Meintanis, 2020. "Change-point methods for multivariate time-series: paired vectorial observations," Statistical Papers, Springer, vol. 61(4), pages 1351-1383, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:198:y:2023:i:c:s0047259x23000751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.