IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v100y2013i1p261-268.html
   My bibliography  Save this article

Non-restarting cumulative sum charts and control of the false discovery rate

Author

Listed:
  • Axel Gandy
  • F. Din-Houn Lau

Abstract

Cumulative sum or cusum charts are typically used to detect a change in the distribution of a sequence of observations, e.g., shifts in the mean. Usually, after signalling, the chart is restarted by setting it to some value below the signalling threshold. We propose a non-restarting cusum chart which is able to detect periods during which the stream is out of control. Further, we advocate an upper boundary to prevent the cusum chart rising too high, which helps to detect a change back into control. We present an algorithm to control the false discovery rate when considering cusum charts based on multiple streams of data. We consider two definitions of a false discovery: signalling out-of-control when the observations have been in control since the start and signalling out-of-control when the observations have been in control since the last time the chart was at zero. We prove that the false discovery rate is controlled under both these definitions simultaneously. Simulations reveal the difference in false discovery rate control when using these and other desirable definitions of a false discovery. Copyright 2013, Oxford University Press.

Suggested Citation

  • Axel Gandy & F. Din-Houn Lau, 2013. "Non-restarting cumulative sum charts and control of the false discovery rate," Biometrika, Biometrika Trust, vol. 100(1), pages 261-268.
  • Handle: RePEc:oup:biomet:v:100:y:2013:i:1:p:261-268
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/ass066
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Lilun & Wen, Mengtao, 2023. "False discovery rate approach to dynamic change detection," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    2. Lau, F. Din-Houn & Adams, Niall M. & Girolami, Mark A. & Butler, Liam J. & Elshafie, Mohammed Z.E.B., 2018. "The role of statistics in data-centric engineering," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 58-62.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:100:y:2013:i:1:p:261-268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.