IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v195y2023ics0047259x23000039.html
   My bibliography  Save this article

On portmanteau-type tests for nonlinear multivariate time series

Author

Listed:
  • De Gooijer, Jan G.

Abstract

A general framework to devise portmanteau-type test statistics for a general class of multivariate nonlinear time series models with vector martingale difference errors is formulated. Based on this framework a suite of individual and mixed multivariate test statistics is considered. Two applications are developed: single- and multiple-lag test statistics. In each case, the resulting portmanteau test statistic is based on multivariate residuals and multivariate squared residuals. Moreover, single- and multiple-lag mixed multivariate portmanteau-type tests are introduced. These test statistics are designed to detect different forms of inadequacies in the model residuals jointly. All proposed tests take uncertainty due to model estimation properly into account. The asymptotic null distribution of each test statistic follows from the asymptotic distribution of the general portmanteau-type test statistic in a natural way. Some considerations are given to the empirical size and power of six test statistics via a simulation study. All tests have satisfactory size and power properties in finite samples. To demonstrate their practical use, the proposed test statistics are applied to the residuals of a vector bivariate nonlinear threshold model fitted to U.S. interest rates.

Suggested Citation

  • De Gooijer, Jan G., 2023. "On portmanteau-type tests for nonlinear multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:jmvana:v:195:y:2023:i:c:s0047259x23000039
    DOI: 10.1016/j.jmva.2023.105157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X23000039
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2023.105157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Bruce E. & Seo, Byeongseon, 2002. "Testing for two-regime threshold cointegration in vector error-correction models," Journal of Econometrics, Elsevier, vol. 110(2), pages 293-318, October.
    2. Christian Francq & Hamdi Raïssi, 2007. "Multivariate Portmanteau Test For Autoregressive Models with Uncorrelated but Nonindependent Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(3), pages 454-470, May.
    3. H. Wong & W. Li, 2002. "Detecting and Diagnostic Checking Multivariate Conditional Heteroscedastic Time Series Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 45-59, March.
    4. Xu, Ke-Li & Phillips, Peter C.B., 2008. "Adaptive estimation of autoregressive models with time-varying variances," Journal of Econometrics, Elsevier, vol. 142(1), pages 265-280, January.
    5. Guochang Wang & Ke Zhu & Xiaofeng Shao, 2022. "Testing for the Martingale Difference Hypothesis in Multivariate Time Series Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 980-994, June.
    6. Shiqing Ling & W. K. Li, 1997. "Diagnostic checking of nonlinear multivariate time series with multivariate arch errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 18(5), pages 447-464, September.
    7. Jan G. De Gooijer & Ao Yuan, 2016. "Non parametric portmanteau tests for detecting non linearities in high dimensions," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(2), pages 385-399, January.
    8. Chabot-Hallé, Dominique & Duchesne, Pierre, 2008. "Diagnostic checking of multivariate nonlinear time series models with martingale difference errors," Statistics & Probability Letters, Elsevier, vol. 78(8), pages 997-1005, June.
    9. Esam Mahdi & A. Ian McLeod, 2012. "Improved multivariate portmanteau test," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(2), pages 211-222, March.
    10. Guodong Li & Wai Keung Li, 2005. "Diagnostic checking for time series models with conditional heteroscedasticity estimated by the least absolute deviation approach," Biometrika, Biometrika Trust, vol. 92(3), pages 691-701, September.
    11. Ke. Zhu, 2013. "A mixed portmanteau test for ARMA-GARCH models by the quasi-maximum exponential likelihood estimation approach," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(2), pages 230-237, March.
    12. Heung Wong & Shiqing Ling, 2005. "Mixed Portmanteau Tests for Time‐Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 569-579, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaxing Yang & Shiqing Ling, 2017. "Inference for Heavy-Tailed and Multiple-Threshold Double Autoregressive Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 318-333, April.
    2. Zhu, Ke, 2012. "A mixed portmanteau test for ARMA-GARCH model by the quasi-maximum exponential likelihood estimation approach," MPRA Paper 40382, University Library of Munich, Germany.
    3. Dalla, Violetta & Giraitis, Liudas & Phillips, Peter C. B., 2022. "Robust Tests For White Noise And Cross-Correlation," Econometric Theory, Cambridge University Press, vol. 38(5), pages 913-941, October.
    4. Duchesne, Pierre, 2004. "On matricial measures of dependence in vector ARCH models with applications to diagnostic checking," Statistics & Probability Letters, Elsevier, vol. 68(2), pages 149-160, June.
    5. Li, Muyi & Zhang, Yanfen, 2022. "Bootstrapping multivariate portmanteau tests for vector autoregressive models with weak assumptions on errors," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    6. Caporin Massimiliano & Paruolo Paolo, 2005. "Spatial effects in multivariate ARCH," Economics and Quantitative Methods qf0501, Department of Economics, University of Insubria.
    7. Songhua Tan & Qianqian Zhu, 2022. "Asymmetric linear double autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 371-388, May.
    8. Kilani Ghoudi & Bruno Rémillard, 2018. "Serial independence tests for innovations of conditional mean and variance models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 3-26, March.
    9. Boubacar Maïnassara, Yacouba & Raïssi, Hamdi, 2015. "Semi-strong linearity testing in linear models with dependent but uncorrelated errors," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 110-115.
    10. Yacouba Boubacar Maïnassara & Othman Kadmiri & Bruno Saussereau, 2022. "Portmanteau test for a class of multivariate asymmetric power GARCH model," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(6), pages 964-1002, November.
    11. Chabot-Hallé, Dominique & Duchesne, Pierre, 2008. "Diagnostic checking of multivariate nonlinear time series models with martingale difference errors," Statistics & Probability Letters, Elsevier, vol. 78(8), pages 997-1005, June.
    12. Heung Wong & Shiqing Ling, 2005. "Mixed Portmanteau Tests for Time‐Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 569-579, July.
    13. Duchesne, Pierre, 2006. "Testing for multivariate autoregressive conditional heteroskedasticity using wavelets," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2142-2163, December.
    14. Chen, Min & Zhu, Ke, 2013. "Sign-based portmanteau test for ARCH-type models with heavy-tailed innovations," MPRA Paper 50487, University Library of Munich, Germany.
    15. Kwan, Wilson & Li, Wai Keung & Li, Guodong, 2012. "On the estimation and diagnostic checking of the ARFIMA–HYGARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3632-3644.
    16. Chen, Min & Zhu, Ke, 2015. "Sign-based portmanteau test for ARCH-type models with heavy-tailed innovations," Journal of Econometrics, Elsevier, vol. 189(2), pages 313-320.
    17. Patilea, V. & Raïssi, H., 2013. "Corrected portmanteau tests for VAR models with time-varying variance," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 190-207.
    18. Oscar Bajo-Rubio & Carmen Diaz-Roldan & Vicente Esteve, 2005. "Is the Fisher effect non-linear? some evidence for Spain, 1963-2002," Applied Financial Economics, Taylor & Francis Journals, vol. 15(12), pages 849-854.
    19. Guochang Wang & Wai Keung Li & Ke Zhu, 2018. "New HSIC-based tests for independence between two stationary multivariate time series," Papers 1804.09866, arXiv.org.
    20. Candelon, Bertrand & Lieb, Lenard, 2013. "Fiscal policy in good and bad times," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2679-2694.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:195:y:2023:i:c:s0047259x23000039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.