IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v195y2023ics0047259x22001336.html
   My bibliography  Save this article

Semiparametric estimation of the high-dimensional elliptical distribution

Author

Listed:
  • Liebscher, Eckhard
  • Okhrin, Ostap

Abstract

This paper investigates semiparametric estimation of the multivariate elliptical distribution in case dimensionality increases with the sample size. We prove the almost sure convergence and derive the convergence rates of the estimator, depending on the sample size, dimensionality, and the bandwidth of the kernel. As an important by-product, we show almost sure convergence with the corresponding convergence rates for the sample covariance matrix under the Frobenius norm. An extensive simulation study has supported the theory.

Suggested Citation

  • Liebscher, Eckhard & Okhrin, Ostap, 2023. "Semiparametric estimation of the high-dimensional elliptical distribution," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:jmvana:v:195:y:2023:i:c:s0047259x22001336
    DOI: 10.1016/j.jmva.2022.105142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X22001336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2022.105142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Bodnar, Taras & Gupta, Arjun K. & Parolya, Nestor, 2014. "On the strong convergence of the optimal linear shrinkage estimator for large dimensional covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 215-228.
    3. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    4. Makoto Aoshima & Kazuyoshi Yata, 2019. "Distance-based classifier by data transformation for high-dimension, strongly spiked eigenvalue models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 473-503, June.
    5. Liebscher, Eckhard, 2005. "A semiparametric density estimator based on elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 92(1), pages 205-225, January.
    6. Yata, Kazuyoshi & Aoshima, Makoto, 2012. "Effective PCA for high-dimension, low-sample-size data with noise reduction via geometric representations," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 193-215.
    7. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taras Bodnar & Nestor Parolya & Erik Thorsen, 2021. "Dynamic Shrinkage Estimation of the High-Dimensional Minimum-Variance Portfolio," Papers 2106.02131, arXiv.org, revised Nov 2021.
    2. Bodnar, Taras & Gupta, Arjun K. & Parolya, Nestor, 2016. "Direct shrinkage estimation of large dimensional precision matrix," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 223-236.
    3. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    4. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2018. "Estimation of the global minimum variance portfolio in high dimensions," European Journal of Operational Research, Elsevier, vol. 266(1), pages 371-390.
    5. Tae-Hwy Lee & Ekaterina Seregina, 2024. "Optimal Portfolio Using Factor Graphical Lasso," Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 670-695.
    6. Jingying Yang, 2024. "Element Aggregation for Estimation of High-Dimensional Covariance Matrices," Mathematics, MDPI, vol. 12(7), pages 1-16, March.
    7. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
    8. Sumanjay Dutta & Shashi Jain, 2023. "Precision versus Shrinkage: A Comparative Analysis of Covariance Estimation Methods for Portfolio Allocation," Papers 2305.11298, arXiv.org.
    9. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    10. Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
    11. Taras Bodnar & Stepan Mazur & Nestor Parolya, 2019. "Central limit theorems for functionals of large sample covariance matrix and mean vector in matrix‐variate location mixture of normal distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 46(2), pages 636-660, June.
    12. Yuki Ikeda & Tatsuya Kubokawa, 2015. "Linear Shrinkage Estimation of Large Covariance Matrices with Use of Factor Models," CIRJE F-Series CIRJE-F-958, CIRJE, Faculty of Economics, University of Tokyo.
    13. Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019. "A multiple testing approach to the regularisation of large sample correlation matrices," Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
    14. Bodnar, Taras & Reiß, Markus, 2016. "Exact and asymptotic tests on a factor model in low and large dimensions with applications," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 125-151.
    15. M Hashem Pesaran & Takashi Yamagata, 2024. "Testing for Alpha in Linear Factor Pricing Models with a Large Number of Securities," Journal of Financial Econometrics, Oxford University Press, vol. 22(2), pages 407-460.
    16. Esra Ulasan & A. Özlem Önder, 2023. "Large portfolio optimisation approaches," Journal of Asset Management, Palgrave Macmillan, vol. 24(6), pages 485-497, October.
    17. Bodnar, Taras & Gupta, Arjun K. & Parolya, Nestor, 2014. "On the strong convergence of the optimal linear shrinkage estimator for large dimensional covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 215-228.
    18. Chen, Binbin & Huang, Shih-Feng & Pan, Guangming, 2015. "High dimensional mean–variance optimization through factor analysis," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 140-159.
    19. Taras Bodnar & Yarema Okhrin & Nestor Parolya, 2022. "Optimal Shrinkage-Based Portfolio Selection in High Dimensions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 140-156, December.
    20. Jianqing Fan & Ricardo Masini & Marcelo C. Medeiros, 2021. "Bridging factor and sparse models," Papers 2102.11341, arXiv.org, revised Sep 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:195:y:2023:i:c:s0047259x22001336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.