IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v4y1986i1p95-103.html
   My bibliography  Save this article

Measuring Measurement Error in Economic Time Series

Author

Listed:
  • Ashley, Richard
  • Vaughan, David

Abstract

No abstract is available for this item.

Suggested Citation

  • Ashley, Richard & Vaughan, David, 1986. "Measuring Measurement Error in Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 95-103, January.
  • Handle: RePEc:bes:jnlbes:v:4:y:1986:i:1:p:95-103
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hansen, Peter R. & Lunde, Asger, 2014. "Estimating The Persistence And The Autocorrelation Function Of A Time Series That Is Measured With Error," Econometric Theory, Cambridge University Press, vol. 30(1), pages 60-93, February.
    2. T.D. Stanley & Ann Robinson, 1990. "Sifting Statistical Significance From the Artifact of Regression- Discontinuity Design," Evaluation Review, , vol. 14(2), pages 166-181, April.
    3. repec:cep:stiecm:/2014/579 is not listed on IDEAS
    4. Kirill Evdokimov & Yuichi Kitamura & Taisuke Otsu, 2014. "Robust estimation of moment condition models with weakly dependent data," STICERD - Econometrics Paper Series 579, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    5. Richard Ashley, 2009. "Assessing the credibility of instrumental variables inference with imperfect instruments via sensitivity analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(2), pages 325-337, March.
    6. Geng, Pei, 2022. "Estimation of functional-coefficient autoregressive models with measurement error," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    7. Peter X.‐K. Song & Dingan Feng, 2005. "On Parameter Estimation for Exponential Dispersion Arma Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(6), pages 843-862, November.
    8. Lenin Arango-Castillo & Francisco J. Martínez-Ramírez & María José Orraca, 2024. "Univariate Measures of Persistence: A Comparative Analysis," Working Papers 2024-11, Banco de México.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:4:y:1986:i:1:p:95-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.