IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v182y2021ics0047259x20302761.html
   My bibliography  Save this article

Analysis of the rate of convergence of fully connected deep neural network regression estimates with smooth activation function

Author

Listed:
  • Langer, Sophie

Abstract

This article contributes to the current statistical theory of deep neural networks (DNNs). It was shown that DNNs are able to circumvent the so-called curse of dimensionality in case that suitable restrictions on the structure of the regression function hold. In most of those results the tuning parameter is the sparsity of the network, which describes the number of non-zero weights in the network. This constraint seemed to be the key factor for the good rate of convergence results. Recently, the assumption was disproved. In particular, it was shown that simple fully connected DNNs can achieve the same rate of convergence. Those fully connected DNNs are based on the unbounded ReLU activation function. In this article we extend the results to smooth activation functions, i.e., to the sigmoid activation function. It is shown that estimators based on fully connected DNNs with sigmoid activation function also achieve the minimax rates of convergence (up to lnn-factors). In our result the number of hidden layers is fixed, the number of neurons per layer tends to infinity for sample size tending to infinity and a bound for the weights in the network is given.

Suggested Citation

  • Langer, Sophie, 2021. "Analysis of the rate of convergence of fully connected deep neural network regression estimates with smooth activation function," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:jmvana:v:182:y:2021:i:c:s0047259x20302761
    DOI: 10.1016/j.jmva.2020.104695
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X20302761
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2020.104695?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu Y. & Ruppert D., 2002. "Penalized Spline Estimation for Partially Linear Single-Index Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1042-1054, December.
    2. Efang Kong & Yingcun Xia, 2007. "Variable selection for the single‐index model," Biometrika, Biometrika Trust, vol. 94(1), pages 217-229.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kwangho Ko & Tongwon Lee & Seunghyun Jeong, 2021. "A Deep Learning Method for Monitoring Vehicle Energy Consumption with GPS Data," Sustainability, MDPI, vol. 13(20), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, Peng & Wang, Qihua & Lian, Heng, 2012. "Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 422-432.
    2. Lai, Peng & Wang, Qihua & Zhou, Xiao-Hua, 2014. "Variable selection and semiparametric efficient estimation for the heteroscedastic partially linear single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 241-256.
    3. Li, Weiyu & Patilea, Valentin, 2017. "A new minimum contrast approach for inference in single-index models," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 47-59.
    4. Jianhong Shi & Qian Yang & Xiongya Li & Weixing Song, 2017. "Effects of measurement error on a class of single-index varying coefficient regression models," Computational Statistics, Springer, vol. 32(3), pages 977-1001, September.
    5. Pierre Dubois & Bruno Jullien & Thierry Magnac, 2008. "Formal and Informal Risk Sharing in LDCs: Theory and Empirical Evidence," Econometrica, Econometric Society, vol. 76(4), pages 679-725, July.
    6. repec:wyi:journl:002176 is not listed on IDEAS
    7. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    8. Wang, Tao & Xu, Pei-Rong & Zhu, Li-Xing, 2012. "Non-convex penalized estimation in high-dimensional models with single-index structure," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 221-235.
    9. Melanie Birke & Sebastien Van Bellegem & Ingrid Van Keilegom, 2017. "Semi-parametric Estimation in a Single-index Model with Endogenous Variables," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 168-191, March.
    10. Yongjin Li & Qingzhao Zhang & Qihua Wang, 2017. "Penalized estimation equation for an extended single-index model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 169-187, February.
    11. Yang, Jing & Tian, Guoliang & Lu, Fang & Lu, Xuewen, 2020. "Single-index modal regression via outer product gradients," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    12. Brittany Green & Heng Lian & Yan Yu & Tianhai Zu, 2021. "Ultra high‐dimensional semiparametric longitudinal data analysis," Biometrics, The International Biometric Society, vol. 77(3), pages 903-913, September.
    13. Huang, Zhensheng & Pang, Zhen, 2012. "Corrected empirical likelihood inference for right-censored partially linear single-index model," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 276-284.
    14. Xu, Mengshan & Otsu, Taisuke, 2020. "Score estimation of monotone partially linear index model," LSE Research Online Documents on Economics 106698, London School of Economics and Political Science, LSE Library.
    15. Taisuke Otsu & Mengshan Xu, 2019. "Score estimation of monotone partially linear index model," STICERD - Econometrics Paper Series 603, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    16. Yang, Suigen & Xue, Liugen & Li, Gaorong, 2014. "Simultaneous confidence band for single-index random effects models with longitudinal data," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 6-14.
    17. Li, Jinqing & Ma, Jun, 2019. "Maximum penalized likelihood estimation of additive hazards models with partly interval censoring," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 170-180.
    18. Lian, Heng & Meng, Jie & Fan, Zengyan, 2015. "Simultaneous estimation of linear conditional quantiles with penalized splines," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 1-21.
    19. Mohamed Alahiane & Idir Ouassou & Mustapha Rachdi & Philippe Vieu, 2021. "Partially Linear Generalized Single Index Models for Functional Data (PLGSIMF)," Stats, MDPI, vol. 4(4), pages 1-21, September.
    20. Zhang, Jun & Zhou, Yan & Lin, Bingqing & Yu, Yao, 2017. "Estimation and hypothesis test on partial linear models with additive distortion measurement errors," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 114-128.
    21. Jun Zhang & Zhenghui Feng & Xiaoguang Wang, 2018. "A constructive hypothesis test for the single-index models with two groups," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1077-1114, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:182:y:2021:i:c:s0047259x20302761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.