IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v62y2000i3p509-524.html
   My bibliography  Save this article

Expected estimating equations to accommodate covariate measurement error

Author

Listed:
  • C.‐Y. Wang
  • Margaret Sullivan Pepe

Abstract

Estimating equations which are not necessarily likelihood‐based score equations are becoming increasingly popular for estimating regression model parameters. This paper is concerned with estimation based on general estimating equations when true covariate data are missing for all the study subjects, but surrogate or mismeasured covariates are available instead. The method is motivated by the covariate measurement error problem in marginal or partly conditional regression of longitudinal data. We propose to base estimation on the expectation of the complete data estimating equation conditioned on available data. The regression parameters and other nuisance parameters are estimated simultaneously by solving the resulting estimating equations. The expected estimating equation (EEE) estimator is equal to the maximum likelihood estimator if the complete data scores are likelihood scores and conditioning is with respect to all the available data. A pseudo‐EEE estimator, which requires less computation, is also investigated. Asymptotic distribution theory is derived. Small sample simulations are conducted when the error process is an order 1 autoregressive model. Regression calibration is extended to this setting and compared with the EEE approach. We demonstrate the methods on data from a longitudinal study of the relationship between childhood growth and adult obesity.

Suggested Citation

  • C.‐Y. Wang & Margaret Sullivan Pepe, 2000. "Expected estimating equations to accommodate covariate measurement error," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 509-524.
  • Handle: RePEc:bla:jorssb:v:62:y:2000:i:3:p:509-524
    DOI: 10.1111/1467-9868.00247
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00247
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00247?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsimikas, John V. & Bantis, Leonidas E. & Georgiou, Stelios D., 2012. "Inference in generalized linear regression models with a censored covariate," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1854-1868.
    2. Glen McGee & Marianthi‐Anna Kioumourtzoglou & Marc G. Weisskopf & Sebastien Haneuse & Brent A. Coull, 2020. "On the interplay between exposure misclassification and informative cluster size," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1209-1226, November.
    3. Yutaka Yasui & Margaret Pepe & Li Hsu & Bao-Ling Adam & Ziding Feng, 2004. "Partially Supervised Learning Using an EM-Boosting Algorithm," Biometrics, The International Biometric Society, vol. 60(1), pages 199-206, March.
    4. Wang, C. Y. & Huang, Yijian, 2001. "Functional methods for logistic regression on random-effect-coefficients for longitudinal measurements," Statistics & Probability Letters, Elsevier, vol. 53(4), pages 347-356, July.
    5. Wang, Qihua & Yu, Keming, 2007. "Likelihood-based kernel estimation in semiparametric errors-in-covariables models with validation data," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 455-480, March.
    6. Zhang, Yuexia & Qin, Guoyou & Zhu, Zhongyi & Zhang, Jiajia, 2018. "Robust estimation in linear regression models for longitudinal data with covariate measurement errors and outliers," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 261-275.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:62:y:2000:i:3:p:509-524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.