IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v160y2017icp169-184.html
   My bibliography  Save this article

Optimal detection of weak positive latent dependence between two sequences of multiple tests

Author

Listed:
  • Zhao, Sihai Dave
  • Cai, T. Tony
  • Li, Hongzhe

Abstract

It is frequently of interest to jointly analyze two paired sequences of multiple tests. This paper studies the problem of detecting whether there are more pairs of tests that are significant in both sequences than would be expected by chance. The asymptotic detection boundary is derived in terms of parameters such as the sparsity of non-null cases in each sequence, the effect sizes of the signals, and the magnitude of the dependence between the two sequences. A new test for detecting weak dependence is also proposed, shown to be asymptotically adaptively optimal, studied in simulations, and applied to study genetic pleiotropy in 10 pediatric autoimmune diseases.

Suggested Citation

  • Zhao, Sihai Dave & Cai, T. Tony & Li, Hongzhe, 2017. "Optimal detection of weak positive latent dependence between two sequences of multiple tests," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 169-184.
  • Handle: RePEc:eee:jmvana:v:160:y:2017:i:c:p:169-184
    DOI: 10.1016/j.jmva.2017.06.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X17304025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2017.06.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olivier Scaillet, 2005. "A Kolmogorov-Smirnov Type Test for Positive Quadrant Dependence," FAME Research Paper Series rp128, International Center for Financial Asset Management and Engineering.
    2. Einmahl, J.H.J., 1996. "Extension to higher dimensions of the Jaeschke-Eicker result on the standardized empirical process," Other publications TiSEM e4026f4e-14f7-4c80-9f72-2, Tilburg University, School of Economics and Management.
    3. Ian J. Barnett & Xihong Lin, 2014. "Analytical p-value calculation for the higher criticism test in finite-d problems," Biometrika, Biometrika Trust, vol. 101(4), pages 964-970.
    4. Ian Barnett & Rajarshi Mukherjee & Xihong Lin, 2017. "The Generalized Higher Criticism for Testing SNP-Set Effects in Genetic Association Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 64-76, January.
    5. Ledwina, Teresa & Wyłupek, Grzegorz, 2014. "Validation of positive quadrant dependence," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 38-47.
    6. Sun, Wenguang & Cai, T. Tony, 2007. "Oracle and Adaptive Compound Decision Rules for False Discovery Rate Control," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 901-912, September.
    7. Aurore Delaigle & Peter Hall & Jiashun Jin, 2011. "Robustness and accuracy of methods for high dimensional data analysis based on Student's t‐statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 283-301, June.
    8. Einmahl, J.H.J. & Mason, D.M., 1985. "Bounds for weighted multivariate empirical distribution functions," Other publications TiSEM 4a583237-c93b-4a57-8b7c-a, Tilburg University, School of Economics and Management.
    9. Fan, Yanan & de Micheaux, Pierre Lafaye & Penev, Spiridon & Salopek, Donna, 2017. "Multivariate nonparametric test of independence," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 189-210.
    10. Sihai Dave Zhao & T. Tony Cai & Thomas P. Cappola & Kenneth B. Margulies & Hongzhe Li, 2017. "Sparse Simultaneous Signal Detection for Identifying Genetically Controlled Disease Genes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1032-1046, July.
    11. Ery Arias-Castro & Meng Wang, 2017. "Distribution-free tests for sparse heterogeneous mixtures," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 71-94, March.
    12. Christopher Genovese & Larry Wasserman, 2002. "Operating characteristics and extensions of the false discovery rate procedure," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 499-517, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marina Bogomolov & Ruth Heller, 2018. "Assessing replicability of findings across two studies of multiple features," Biometrika, Biometrika Trust, vol. 105(3), pages 505-516.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gómez-Villegas Miguel A. & Salazar Isabel & Sanz Luis, 2014. "A Bayesian decision procedure for testing multiple hypotheses in DNA microarray experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(1), pages 49-65, February.
    2. Long Qu & Dan Nettleton & Jack C. M. Dekkers, 2012. "Improved Estimation of the Noncentrality Parameter Distribution from a Large Number of t-Statistics, with Applications to False Discovery Rate Estimation in Microarray Data Analysis," Biometrics, The International Biometric Society, vol. 68(4), pages 1178-1187, December.
    3. Xuehu Zhu & Xu Guo & Lu Lin & Lixing Zhu, 2016. "Testing for positive expectation dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 135-153, February.
    4. Cipolli III, William & Hanson, Timothy & McLain, Alexander C., 2016. "Bayesian nonparametric multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 64-79.
    5. Hai Shu & Bin Nan & Robert Koeppe, 2015. "Multiple testing for neuroimaging via hidden Markov random field," Biometrics, The International Biometric Society, vol. 71(3), pages 741-750, September.
    6. T. Tony Cai & Wenguang Sun & Weinan Wang, 2019. "Covariate‐assisted ranking and screening for large‐scale two‐sample inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 187-234, April.
    7. Wenguang Sun & T. Tony Cai, 2009. "Large‐scale multiple testing under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 393-424, April.
    8. Saharon Rosset & Ruth Heller & Amichai Painsky & Ehud Aharoni, 2022. "Optimal and maximin procedures for multiple testing problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1105-1128, September.
    9. Jeng, X. Jessie & Chen, Xiongzhi, 2019. "Predictor ranking and false discovery proportion control in high-dimensional regression," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 163-175.
    10. He, Li & Sarkar, Sanat K. & Zhao, Zhigen, 2015. "Capturing the severity of type II errors in high-dimensional multiple testing," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 106-116.
    11. Ruth Heller & Saharon Rosset, 2021. "Optimal control of false discovery criteria in the two‐group model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 133-155, February.
    12. Joshua Habiger & David Watts & Michael Anderson, 2017. "Multiple testing with heterogeneous multinomial distributions," Biometrics, The International Biometric Society, vol. 73(2), pages 562-570, June.
    13. Zhigen Zhao, 2022. "Where to find needles in a haystack?," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 148-174, March.
    14. Izmirlian, Grant, 2020. "Strong consistency and asymptotic normality for quantities related to the Benjamini–Hochberg false discovery rate procedure," Statistics & Probability Letters, Elsevier, vol. 160(C).
    15. Ledwina, Teresa & Wyłupek, Grzegorz, 2014. "Validation of positive quadrant dependence," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 38-47.
    16. T. Tony Cai & Wenguang Sun, 2017. "Optimal screening and discovery of sparse signals with applications to multistage high throughput studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 197-223, January.
    17. Jiaying Gu & Roger Koenker, 2020. "Invidious Comparisons: Ranking and Selection as Compound Decisions," Papers 2012.12550, arXiv.org, revised Sep 2021.
    18. Guo, Xu & Li, Jingyuan, 2016. "Confidence band for expectation dependence with applications," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 141-149.
    19. Cai, Qingyun, 2018. "A scoring criterion for rejection of clustered p-values," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 180-189.
    20. Jiaying Gu & Roger Koenker, 2023. "Invidious Comparisons: Ranking and Selection as Compound Decisions," Econometrica, Econometric Society, vol. 91(1), pages 1-41, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:160:y:2017:i:c:p:169-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.