IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v80y2010i23-24p1925-1932.html
   My bibliography  Save this article

A note on bootstrap approximations for the empirical copula process

Author

Listed:
  • Bücher, Axel
  • Dette, Holger

Abstract

It is well known that the empirical copula process converges weakly to a centered Gaussian field. Because the covariance structure of the limiting process depends on the partial derivatives of the unknown copula several bootstrap approximations for the empirical copula process have been proposed in the literature. We present a brief review of these procedures. Because some of these procedures also require the estimation of the derivatives of the unknown copula we propose an alternative approach which circumvents this problem. Finally a simulation study is presented in order to compare the different bootstrap approximations for the empirical copula process.

Suggested Citation

  • Bücher, Axel & Dette, Holger, 2010. "A note on bootstrap approximations for the empirical copula process," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1925-1932, December.
  • Handle: RePEc:eee:stapro:v:80:y:2010:i:23-24:p:1925-1932
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00244-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rémillard, Bruno & Scaillet, Olivier, 2009. "Testing for equality between two copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 377-386, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Zhi & Mukherjee, Amitava & Zhang, Jiujun, 2021. "Some robust approaches based on copula for monitoring bivariate processes and component-wise assessment," European Journal of Operational Research, Elsevier, vol. 289(1), pages 177-196.
    2. Kiriliouk, Anna & Segers, Johan & Tsukahara, Hideatsu, 2019. "On Some Resampling Procedures with the Empirical Beta Copula," LIDAM Discussion Papers ISBA 2019012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Christian Genest & Johanna Nešlehová, 2014. "On tests of radial symmetry for bivariate copulas," Statistical Papers, Springer, vol. 55(4), pages 1107-1119, November.
    4. Bouezmarni, Taoufik & Rombouts, Jeroen V.K. & Taamouti, Abderrahim, 2010. "Asymptotic properties of the Bernstein density copula estimator for [alpha]-mixing data," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 1-10, January.
    5. Quessy, Jean-François, 2021. "A Szekely–Rizzo inequality for testing general copula homogeneity hypotheses," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    6. Jean-David Fermanian, 2012. "An overview of the goodness-of-fit test problem for copulas," Papers 1211.4416, arXiv.org.
    7. Rémillard, Bruno & Scaillet, Olivier, 2009. "Testing for equality between two copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 377-386, March.
    8. Fuchs, Sebastian & Tschimpke, Marco, 2024. "A novel positive dependence property and its impact on a popular class of concordance measures," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    9. Graciela Sanroman & Guillermo Santos, 2021. "The joint distribution of income and wealth in Uruguay," Revista Cuadernos de Economia, Universidad Nacional de Colombia, FCE, CID, vol. 40(83), pages 609-642, August.
    10. Christian Genest & Johanna Nešlehová & Jean-François Quessy, 2012. "Tests of symmetry for bivariate copulas," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(4), pages 811-834, August.
    11. Salim Bouzebda, 2023. "On Weak Convergence of the Bootstrap Copula Empirical Process with Random Resample Size," Stats, MDPI, vol. 6(1), pages 1-16, February.
    12. Bianchi, Pascal & Elgui, Kevin & Portier, François, 2023. "Conditional independence testing via weighted partial copulas," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    13. Kojadinovic, Ivan & Rohmer, Tom & Segers, Johan, 2013. "Detecting changes in cross-sectional dependence in multivariate time series," LIDAM Discussion Papers ISBA 2013051, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Jean-François Quessy, 2019. "Consistent nonparametric tests for detecting gradual changes in the marginals and the copula of multivariate time series," Statistical Papers, Springer, vol. 60(3), pages 717-746, June.
    15. Bücher, Axel & Kojadinovic, Ivan & Rohmer, Tom & Segers, Johan, 2014. "Detecting changes in cross-sectional dependence in multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 111-128.
    16. Tarik Bahraoui & Jean‐François Quessy, 2022. "Tests of multivariate copula exchangeability based on Lévy measures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1215-1243, September.
    17. Beare, Brendan K. & Seo, Juwon, 2020. "Randomization Tests Of Copula Symmetry," Econometric Theory, Cambridge University Press, vol. 36(6), pages 1025-1063, December.
    18. Jäschke, Stefan, 2014. "Estimation of risk measures in energy portfolios using modern copula techniques," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 359-376.
    19. Brodsky, Boris & Penikas, Henry & Safaryan, Irina, 2009. "Detection of Structural Breaks in Copula Models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 16(4), pages 3-15.
    20. Jean-François Plante, 2017. "Rank correlation under categorical confounding," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:80:y:2010:i:23-24:p:1925-1932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.