IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v45y2004i2p279-286.html
   My bibliography  Save this article

Estimation of a normal mean relative to balanced loss functions

Author

Listed:
  • N. Farsipour
  • A. Asgharzadeh

Abstract

No abstract is available for this item.

Suggested Citation

  • N. Farsipour & A. Asgharzadeh, 2004. "Estimation of a normal mean relative to balanced loss functions," Statistical Papers, Springer, vol. 45(2), pages 279-286, April.
  • Handle: RePEc:spr:stpapr:v:45:y:2004:i:2:p:279-286
    DOI: 10.1007/BF02777228
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02777228
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02777228?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dey, Dipak K. & Ghosh, Malay & Strawderman, William E., 1999. "On estimation with balanced loss functions," Statistics & Probability Letters, Elsevier, vol. 45(2), pages 97-101, November.
    2. Zellner, A., 1992. "Bayesian and Non-Bayesian Estimation using Balanced Loss Functions," Papers 92-20, California Irvine - School of Social Sciences.
    3. Chung Younshik & Kim Chansoo & Song Seongho, 1998. "Linear Estimators Of A Poisson Mean Under Balanced Loss Functions," Statistics & Risk Modeling, De Gruyter, vol. 16(3), pages 245-258, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gómez-Déniz, E., 2008. "A generalization of the credibility theory obtained by using the weighted balanced loss function," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 850-854, April.
    2. Jerzy Baran & Agnieszka Stępień-Baran, 2013. "Sequential estimation of a location parameter and powers of a scale parameter from delayed observations," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(3), pages 263-280, August.
    3. Cao, Ming-Xiang & He, Dao-Jiang, 2017. "Admissibility of linear estimators of the common mean parameter in general linear models under a balanced loss function," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 246-254.
    4. A. Asgharzadeh & N. Sanjari Farsipour, 2008. "Estimation of the exponential mean time to failure under a weighted balanced loss function," Statistical Papers, Springer, vol. 49(1), pages 121-131, March.
    5. Qiang Zhang & Lijun Wu & Qianqian Cui, 2017. "The balanced credibility estimators with correlation risk and inflation factor," Statistical Papers, Springer, vol. 58(3), pages 659-672, September.
    6. Kousik Maiti & Suchandan Kayal, 2019. "Estimation for the generalized Fréchet distribution under progressive censoring scheme," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1276-1301, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Asgharzadeh & N. Sanjari Farsipour, 2008. "Estimation of the exponential mean time to failure under a weighted balanced loss function," Statistical Papers, Springer, vol. 49(1), pages 121-131, March.
    2. van Akkeren, Marco & Judge, George & Mittelhammer, Ron, 2002. "Generalized moment based estimation and inference," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 127-148, March.
    3. Jafari Jozani, Mohammad & Marchand, Éric & Parsian, Ahmad, 2006. "On estimation with weighted balanced-type loss function," Statistics & Probability Letters, Elsevier, vol. 76(8), pages 773-780, April.
    4. Mohammad Jafari Jozani & Éric Marchand & Ahmad Parsian, 2012. "Bayesian and Robust Bayesian analysis under a general class of balanced loss functions," Statistical Papers, Springer, vol. 53(1), pages 51-60, February.
    5. Chaturvedi, Anoop & Shalabh, 2004. "Risk and Pitman closeness properties of feasible generalized double k-class estimators in linear regression models with non-spherical disturbances under balanced loss function," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 229-256, August.
    6. Zellner, Arnold, 2010. "Bayesian shrinkage estimates and forecasts of individual and total or aggregate outcomes," Economic Modelling, Elsevier, vol. 27(6), pages 1392-1397, November.
    7. Zinodiny, S. & Rezaei, S. & Nadarajah, S., 2014. "Bayes minimax estimation of the multivariate normal mean vector under balanced loss function," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 96-101.
    8. Jerzy Baran & Agnieszka Stępień-Baran, 2013. "Sequential estimation of a location parameter and powers of a scale parameter from delayed observations," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(3), pages 263-280, August.
    9. Chuanming Gao & Kajal Lahiri, 2000. "A Comparison of Some Recent Bayesian and Classical Procedures for Simultaneous Equation Models with Weak Instruments," Econometric Society World Congress 2000 Contributed Papers 0230, Econometric Society.
    10. G. Datta & M. Ghosh & R. Steorts & J. Maples, 2011. "Bayesian benchmarking with applications to small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 574-588, November.
    11. Cao, Mingxiang, 2014. "Admissibility of linear estimators for the stochastic regression coefficient in a general Gauss–Markoff model under a balanced loss function," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 25-30.
    12. Payandeh Najafabadi, Amir T., 2010. "A new approach to the credibility formula," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 334-338, April.
    13. Jafar Ahmadi & Mohammad Jafari Jozani & Éric Marchand & Ahmad Parsian, 2009. "Prediction of k-records from a general class of distributions under balanced type loss functions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(1), pages 19-33, June.
    14. Hobbad, Lahoucine & Marchand, Éric & Ouassou, Idir, 2021. "On shrinkage estimation of a spherically symmetric distribution for balanced loss functions," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    15. Gómez-Déniz, E., 2008. "A generalization of the credibility theory obtained by using the weighted balanced loss function," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 850-854, April.
    16. Cao, Ming-Xiang & He, Dao-Jiang, 2017. "Admissibility of linear estimators of the common mean parameter in general linear models under a balanced loss function," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 246-254.
    17. Marchand, Éric & Strawderman, William E., 2020. "On shrinkage estimation for balanced loss functions," Journal of Multivariate Analysis, Elsevier, vol. 175(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:45:y:2004:i:2:p:279-286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.