IDEAS home Printed from https://ideas.repec.org/a/bpj/strimo/v30y2013i1p55-74n3.html
   My bibliography  Save this article

Rate of convergence of the density estimation of regression residual

Author

Listed:
  • Györfi László
  • Walk Harro

Abstract

Consider the regression problem with a response variable Y and with a d-dimensional feature vector X. For the regression function m(x) = E{Y|X = x}, this paper investigates methods for estimating the density of the residual Y − m(X) from independent and identically distributed data. If the density is twice differentiable and has compact support then we bound the rate of convergence of the kernel density estimate. It turns out that for d ≤ 3 and for partitioning regression estimates, the regression estimation error has no influence on the rate of convergence of the density estimate.

Suggested Citation

  • Györfi László & Walk Harro, 2013. "Rate of convergence of the density estimation of regression residual," Statistics & Risk Modeling, De Gruyter, vol. 30(1), pages 55-74, March.
  • Handle: RePEc:bpj:strimo:v:30:y:2013:i:1:p:55-74:n:3
    DOI: 10.1524/strm.2013.1127
    as

    Download full text from publisher

    File URL: https://doi.org/10.1524/strm.2013.1127
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1524/strm.2013.1127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neumeyer, N. & Van Keilegom, I., 2010. "Estimating the error distribution in nonparametric multiple regression with applications to model testing," LIDAM Reprints ISBA 2010006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Harro Walk, 2002. "Almost Sure Convergence Properties of Nadaraya-Watson Regression Estimates," International Series in Operations Research & Management Science, in: Moshe Dror & Pierre L’Ecuyer & Ferenc Szidarovszky (ed.), Modeling Uncertainty, chapter 0, pages 201-223, Springer.
    3. Cheng, Fuxia, 2002. "Consistency of error density and distribution function estimators in nonparametric regression," Statistics & Probability Letters, Elsevier, vol. 59(3), pages 257-270, October.
    4. Harro Walk, 2005. "Strong universal consistency of smooth kernel regression estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(4), pages 665-685, December.
    5. Liitiäinen, Elia & Corona, Francesco & Lendasse, Amaury, 2010. "Residual variance estimation using a nearest neighbor statistic," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 811-823, April.
    6. Müller, Ursula U. & Schick, Anton & Wefelmeyer, Wolfgang, 2009. "Estimating the error distribution function in nonparametric regression with multivariate covariates," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 957-964, April.
    7. Devroye, Luc & Felber, Tina & Kohler, Michael & Krzyżak, Adam, 2012. "L1-consistent estimation of the density of residuals in random design regression models," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 173-179.
    8. Neumeyer, Natalie & Van Keilegom, Ingrid, 2010. "Estimating the error distribution in nonparametric multiple regression with applications to model testing," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1067-1078, May.
    9. Ahmad, Ibrahim A., 1992. "Residuals density estimation in nonparametric regression," Statistics & Probability Letters, Elsevier, vol. 14(2), pages 133-139, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Györfi, László & Walk, Harro, 2012. "Strongly consistent density estimation of the regression residual," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1923-1929.
    2. Devroye, Luc & Felber, Tina & Kohler, Michael & Krzyżak, Adam, 2012. "L1-consistent estimation of the density of residuals in random design regression models," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 173-179.
    3. Feve, Frederique & Florens, Jean-Pierre & Van Keilegom, Ingrid, 2012. "Estimation of conditional ranks and tests of exogeneity in nonparametric nonseparable models," LIDAM Discussion Papers ISBA 2012036, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Müller, Ursula U. & Schick, Anton & Wefelmeyer, Wolfgang, 2014. "Testing for additivity in partially linear regression with possibly missing responses," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 51-61.
    5. Chown, Justin, 2016. "Efficient estimation of the error distribution function in heteroskedastic nonparametric regression with missing data," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 31-39.
    6. Juan Carlos Escanciano & Juan Carlos Pardo-Fernández & Ingrid Van Keilegom, 2017. "Semiparametric Estimation of Risk–Return Relationships," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 40-52, January.
    7. Gregory S. NAMUSONGE & Mary Nelima LYANI (SINDANI) & Maurice SAKWA, 2016. "Accounts Receivable Risk Management Practices and Growth of SMEs in Kakamega County, Kenya," Expert Journal of Finance, Sprint Investify, vol. 4(1), pages 31-43.
    8. Elia Lapenta, 2022. "A Bootstrap Specification Test for Semiparametric Models with Generated Regressors," Papers 2212.11112, arXiv.org, revised Oct 2023.
    9. Escanciano, Juan Carlos & Jacho-Chávez, David T., 2012. "n-uniformly consistent density estimation in nonparametric regression models," Journal of Econometrics, Elsevier, vol. 167(2), pages 305-316.
    10. Shuzhi Zhu & Peixin Zhao, 2019. "Tests for the linear hypothesis in semi-functional partial linear regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(2), pages 125-148, March.
    11. Jun Zhang & Zhenghui Feng & Xiaoguang Wang, 2018. "A constructive hypothesis test for the single-index models with two groups," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1077-1114, October.
    12. Samb, R. & Heuchenne, C. & Van Keilegom, I., 2011. "Estimation of the error density in a semiparametric transformation model," LIDAM Discussion Papers ISBA 2011023, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Benjamin Colling & Cédric Heuchenne & Rawane Samb & Ingrid Van Keilegom, 2015. "Estimation of the error density in a semiparametric transformation model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 1-18, February.
    14. Bravo, Francesco & Escanciano, Juan Carlos & Van Keilegom, Ingrid, 2015. "Wilks' Phenomenon in Two-Step Semiparametric Empirical Likelihood Inference," LIDAM Discussion Papers ISBA 2015016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Florens, Jean-Pierre & Simar, Léopold & Van Keilegom, Ingrid, 2014. "Frontier estimation in nonparametric location-scale models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 456-470.
    16. Joseph Ngatchou-Wandji & Marwa Ltaifa & Didier Alain Njamen Njomen & Jia Shen, 2022. "Nonparametric Estimation of the Density Function of the Distribution of the Noise in CHARN Models," Mathematics, MDPI, vol. 10(4), pages 1-20, February.
    17. Neumeyer, Natalie & Noh, Hohsuk & Van Keilegom, Ingrid, 2014. "Heteroscedastic semiparametric transformation models: estimation and testing for validity," LIDAM Discussion Papers ISBA 2014047, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Pardo-Fernandez, Juan Carlos & Rodriguez-alvarez, Maria Xose & Van Keilegom, Ingrid, 2013. "A review on ROC curves in the presence of covariates," LIDAM Discussion Papers ISBA 2013050, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Kim, Gwangsu & Choi, Taeryon, 2019. "Asymptotic properties of nonparametric estimation and quantile regression in Bayesian structural equation models," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 68-82.
    20. Colling, Benjamin & Van Keilegom, Ingrid, 2016. "Goodness-of-fit tests in semiparametric transformation models using the integrated regression function," LIDAM Discussion Papers ISBA 2016031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:strimo:v:30:y:2013:i:1:p:55-74:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.