IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v119y2013icp71-80.html
   My bibliography  Save this article

Regression analysis of multivariate panel count data with an informative observation process

Author

Listed:
  • Zhang, Haixiang
  • Zhao, Hui
  • Sun, Jianguo
  • Wang, Dehui
  • Kim, KyungMann

Abstract

Multivariate panel count data arise in event history studies on recurrent events if there exist several related events and study subjects can be examined or observed only at discrete time points instead of over continuous periods. In these situations, a complicated issue that may arise is that the observation time points or process may be related to the underlying recurrent event process of interest. That is, we have informative observation processes. It is obvious that to perform a valid analysis, both the relationship among different types of recurrent events and the informative observation process need to be taken into account. To address these, we propose a robust joint modeling approach. For the estimation of regression parameters, an estimating equation-based inference procedure is developed and the asymptotic properties of the resulting estimates are established. Numerical studies indicate that the proposed approach works well for practical situations and the methodology is applied to a skin cancer study that motivates this study.

Suggested Citation

  • Zhang, Haixiang & Zhao, Hui & Sun, Jianguo & Wang, Dehui & Kim, KyungMann, 2013. "Regression analysis of multivariate panel count data with an informative observation process," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 71-80.
  • Handle: RePEc:eee:jmvana:v:119:y:2013:i:c:p:71-80
    DOI: 10.1016/j.jmva.2013.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X13000730
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2013.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chiung-Yu Huang & Mei-Cheng Wang & Ying Zhang, 2006. "Analysing panel count data with informative observation times," Biometrika, Biometrika Trust, vol. 93(4), pages 763-775, December.
    2. Jianguo Sun, 2003. "A nonparametric test for panel count data," Biometrika, Biometrika Trust, vol. 90(1), pages 199-208, March.
    3. Jianguo Sun & Xingwei Tong & Xin He, 2007. "Regression Analysis of Panel Count Data with Dependent Observation Times," Biometrics, The International Biometric Society, vol. 63(4), pages 1053-1059, December.
    4. Ying Zhang, 2002. "A semiparametric pseudolikelihood estimation method for panel count data," Biometrika, Biometrika Trust, vol. 89(1), pages 39-48, March.
    5. Xingqiu Zhao & Jianguo Sun, 2011. "Nonparametric Comparison for Panel Count Data with Unequal Observation Processes," Biometrics, The International Biometric Society, vol. 67(3), pages 770-779, September.
    6. Lin D Y & Ying Z, 2001. "Semiparametric and Nonparametric Regression Analysis of Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 103-126, March.
    7. X. Joan Hu & Jianguo Sun & Lee‐Jen Wei, 2003. "Regression Parameter Estimation from Panel Counts," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 25-43, March.
    8. N. Balakrishnan & Xingqiu Zhao, 2011. "A class of multi-sample nonparametric tests for panel count data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 135-156, February.
    9. Lin D Y & Wei L J & Ying Z, 2001. "Semiparametric Transformation Models for Point Processes," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 620-628, June.
    10. D. Y. Lin & L. J. Wei & I. Yang & Z. Ying, 2000. "Semiparametric regression for the mean and rate functions of recurrent events," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 711-730.
    11. Zhao, Xingqiu & Tong, Xingwei & Sun, Jianguo, 2013. "Robust estimation for panel count data with informative observation times," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 33-40.
    12. J. Sun & L. J. Wei, 2000. "Regression analysis of panel count data with covariate‐dependent observation and censoring times," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 293-302.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faysal Satter & Yichuan Zhao & Ni Li, 2024. "Empirical likelihood inference for the panel count data with informative observation process," Statistical Papers, Springer, vol. 65(5), pages 3039-3061, July.
    2. Chunling Wang & Xiaoyan Lin, 2022. "Bayesian Semiparametric Regression Analysis of Multivariate Panel Count Data," Stats, MDPI, vol. 5(2), pages 1-17, May.
    3. Li, Yang & He, Xin & Wang, Haiying & Zhang, Bin & Sun, Jianguo, 2015. "Semiparametric regression of multivariate panel count data with informative observation times," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 209-219.
    4. Weiwei Wang & Yijun Wang & Xiaobing Zhao, 2022. "Semiparametric analysis of multivariate panel count data with nonlinear interactions," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(1), pages 89-115, January.
    5. Deng, Shirong & Liu, Kin-yat & Zhao, Xingqiu, 2017. "Semiparametric regression analysis of multivariate longitudinal data with informative observation times," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 120-130.
    6. Guo, Yuanyuan & Sun, Dayu & Sun, Jianguo, 2022. "Inference of a time-varying coefficient regression model for multivariate panel count data," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    7. Yang Li & Xin He & Haiying Wang & Jianguo Sun, 2016. "Regression analysis of longitudinal data with correlated censoring and observation times," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 343-362, July.
    8. Jie Zhou & Haixiang Zhang & Liuquan Sun & Jianguo Sun, 2017. "Joint analysis of panel count data with an informative observation process and a dependent terminal event," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 560-584, October.
    9. Yao, Bin & Wang, Lianming & He, Xin, 2016. "Semiparametric regression analysis of panel count data allowing for within-subject correlation," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 47-59.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yang & Zhao, Hui & Sun, Jianguo & Kim, KyungMann, 2014. "Nonparametric tests for panel count data with unequal observation processes," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 103-111.
    2. Jie Zhou & Haixiang Zhang & Liuquan Sun & Jianguo Sun, 2017. "Joint analysis of panel count data with an informative observation process and a dependent terminal event," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 560-584, October.
    3. Zhao, Xingqiu & Tong, Xingwei, 2011. "Semiparametric regression analysis of panel count data with informative observation times," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 291-300, January.
    4. Zhao, Xingqiu & Tong, Xingwei & Sun, Jianguo, 2013. "Robust estimation for panel count data with informative observation times," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 33-40.
    5. Hangjin Jiang & Wen Su & Xingqiu Zhao, 2020. "Robust estimation for panel count data with informative observation times and censoring times," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 65-84, January.
    6. Yang Li & Xin He & Haiying Wang & Jianguo Sun, 2016. "Regression analysis of longitudinal data with correlated censoring and observation times," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 343-362, July.
    7. Li, Yang & He, Xin & Wang, Haiying & Zhang, Bin & Sun, Jianguo, 2015. "Semiparametric regression of multivariate panel count data with informative observation times," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 209-219.
    8. Xingqiu Zhao & N. Balakrishnan & Jianguo Sun, 2011. "Nonparametric inference based on panel count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 1-42, May.
    9. Faysal Satter & Yichuan Zhao & Ni Li, 2024. "Empirical likelihood inference for the panel count data with informative observation process," Statistical Papers, Springer, vol. 65(5), pages 3039-3061, July.
    10. Gang Cheng & Ying Zhang & Liqiang Lu, 2011. "Efficient algorithms for computing the non and semi-parametric maximum likelihood estimates with panel count data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 567-579.
    11. Xin He & Xuenan Feng & Xingwei Tong & Xingqiu Zhao, 2017. "Semiparametric partially linear varying coefficient models with panel count data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 439-466, July.
    12. Sy Han Chiou & Gongjun Xu & Jun Yan & Chiung‐Yu Huang, 2018. "Semiparametric estimation of the accelerated mean model with panel count data under informative examination times," Biometrics, The International Biometric Society, vol. 74(3), pages 944-953, September.
    13. Xingwei Tong & Xin He & Liuquan Sun & Jianguo Sun, 2009. "Variable Selection for Panel Count Data via Non‐Concave Penalized Estimating Function," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 620-635, December.
    14. Yao, Bin & Wang, Lianming & He, Xin, 2016. "Semiparametric regression analysis of panel count data allowing for within-subject correlation," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 47-59.
    15. Hui Zhao & Yang Li & Jianguo Sun, 2013. "Semiparametric analysis of multivariate panel count data with dependent observation processes and a terminal event," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 379-394, June.
    16. Haiying Wang & Yang Li & Jianguo Sun, 2015. "Focused and Model Average Estimation for Regression Analysis of Panel Count Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 732-745, September.
    17. Balakrishnan, N. & Zhao, Xingqiu, 2010. "A nonparametric test for the equality of counting processes with panel count data," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 135-142, January.
    18. Na Cai & Wenbin Lu & Hao Helen Zhang, 2012. "Time-Varying Latent Effect Model for Longitudinal Data with Informative Observation Times," Biometrics, The International Biometric Society, vol. 68(4), pages 1093-1102, December.
    19. Jianguo Sun & Xingwei Tong & Xin He, 2007. "Regression Analysis of Panel Count Data with Dependent Observation Times," Biometrics, The International Biometric Society, vol. 63(4), pages 1053-1059, December.
    20. N. Balakrishnan & Xingqiu Zhao, 2011. "A class of multi-sample nonparametric tests for panel count data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 135-156, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:119:y:2013:i:c:p:71-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.