IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v107y2017icp120-130.html
   My bibliography  Save this article

Semiparametric regression analysis of multivariate longitudinal data with informative observation times

Author

Listed:
  • Deng, Shirong
  • Liu, Kin-yat
  • Zhao, Xingqiu

Abstract

Multivariate longitudinal data arises when subjects under study may experience several possible related response outcomes. This article proposed a new class of flexible semiparametric models for multivariate longitudinal data with informative observation times through latent variables and completely unspecified link functions, which allows for any functional forms of covariate effects on the intensity functions for the observation processes. A novel estimating equation approach that does not rely on forms of link functions and distributions of frailties is developed. The asymptotic properties for the resulting estimators and the model checking technique for the overall fit of the proposed models are established. The simulation results show that the proposed approach works well. The analysis of skin cancer chemoprevention trial data is provided for illustration.

Suggested Citation

  • Deng, Shirong & Liu, Kin-yat & Zhao, Xingqiu, 2017. "Semiparametric regression analysis of multivariate longitudinal data with informative observation times," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 120-130.
  • Handle: RePEc:eee:csdana:v:107:y:2017:i:c:p:120-130
    DOI: 10.1016/j.csda.2016.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731630233X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Haixiang & Zhao, Hui & Sun, Jianguo & Wang, Dehui & Kim, KyungMann, 2013. "Regression analysis of multivariate panel count data with an informative observation process," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 71-80.
    2. Sun, Jianguo & Sun, Liuquan & Liu, Dandan, 2007. "Regression Analysis of Longitudinal Data in the Presence of Informative Observation and Censoring Times," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1397-1406, December.
    3. Lin D Y & Ying Z, 2001. "Semiparametric and Nonparametric Regression Analysis of Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 103-126, March.
    4. Welsh A.H. & Lin X. & Carroll R.J., 2002. "Marginal Longitudinal Nonparametric Regression: Locality and Efficiency of Spline and Kernel Methods," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 482-493, June.
    5. D. Y. Lin & L. J. Wei & I. Yang & Z. Ying, 2000. "Semiparametric regression for the mean and rate functions of recurrent events," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 711-730.
    6. Li, Yang & He, Xin & Wang, Haiying & Zhang, Bin & Sun, Jianguo, 2015. "Semiparametric regression of multivariate panel count data with informative observation times," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 209-219.
    7. Hui Zhao & Yang Li & Jianguo Sun, 2013. "Semiparametric analysis of multivariate panel count data with dependent observation processes and a terminal event," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 379-394, June.
    8. Sun, Jianguo & Park, Do-Hwan & Sun, Liuquan & Zhao, Xingqiu, 2005. "Semiparametric Regression Analysis of Longitudinal Data With Informative Observation Times," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 882-889, September.
    9. Yu Liang & Wenbin Lu & Zhiliang Ying, 2009. "Joint Modeling and Analysis of Longitudinal Data with Informative Observation Times," Biometrics, The International Biometric Society, vol. 65(2), pages 377-384, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xingqiu & Tong, Xingwei & Sun, Jianguo, 2013. "Robust estimation for panel count data with informative observation times," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 33-40.
    2. Lianqiang Qu & Liuquan Sun & Xinyuan Song, 2018. "A Joint Modeling Approach for Longitudinal Data with Informative Observation Times and a Terminal Event," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 609-633, December.
    3. Na Cai & Wenbin Lu & Hao Helen Zhang, 2012. "Time-Varying Latent Effect Model for Longitudinal Data with Informative Observation Times," Biometrics, The International Biometric Society, vol. 68(4), pages 1093-1102, December.
    4. Hangjin Jiang & Wen Su & Xingqiu Zhao, 2020. "Robust estimation for panel count data with informative observation times and censoring times," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 65-84, January.
    5. Qing Cai & Mei‐Cheng Wang & Kwun Chuen Gary Chan, 2017. "Joint modeling of longitudinal, recurrent events and failure time data for survivor's population," Biometrics, The International Biometric Society, vol. 73(4), pages 1150-1160, December.
    6. Sun, Liuquan & Tong, Xingwei, 2009. "Analyzing longitudinal data with informative observation times under biased sampling," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1162-1168, May.
    7. Chen, Xuerong & Tang, Niansheng & Zhou, Yong, 2016. "Quantile regression of longitudinal data with informative observation times," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 176-188.
    8. Zhou, Jie & Song, Xinyuan & Sun, Liuquan, 2020. "Continuous time hidden Markov model for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    9. Chunling Wang & Xiaoyan Lin, 2022. "Bayesian Semiparametric Regression Analysis of Multivariate Panel Count Data," Stats, MDPI, vol. 5(2), pages 1-17, May.
    10. Jie Zhou & Haixiang Zhang & Liuquan Sun & Jianguo Sun, 2017. "Joint analysis of panel count data with an informative observation process and a dependent terminal event," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 560-584, October.
    11. Li, Yang & He, Xin & Wang, Haiying & Zhang, Bin & Sun, Jianguo, 2015. "Semiparametric regression of multivariate panel count data with informative observation times," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 209-219.
    12. Caleb Weaver & Luo Xiao & Wenbin Lu, 2023. "Functional data analysis for longitudinal data with informative observation times," Biometrics, The International Biometric Society, vol. 79(2), pages 722-733, June.
    13. Yu Liang & Wenbin Lu & Zhiliang Ying, 2009. "Joint Modeling and Analysis of Longitudinal Data with Informative Observation Times," Biometrics, The International Biometric Society, vol. 65(2), pages 377-384, June.
    14. Faysal Satter & Yichuan Zhao & Ni Li, 2024. "Empirical likelihood inference for the panel count data with informative observation process," Statistical Papers, Springer, vol. 65(5), pages 3039-3061, July.
    15. Yang Li & Xin He & Haiying Wang & Jianguo Sun, 2016. "Regression analysis of longitudinal data with correlated censoring and observation times," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 343-362, July.
    16. Miao Han & Liuquan Sun & Yutao Liu & Jun Zhu, 2018. "Joint analysis of recurrent event data with additive–multiplicative hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 523-547, July.
    17. Weiwei Wang & Zhiyang Cui & Ruijie Chen & Yijun Wang & Xiaobing Zhao, 2024. "Regression analysis of clustered panel count data with additive mean models," Statistical Papers, Springer, vol. 65(5), pages 2915-2936, July.
    18. Li, Yang & Zhao, Hui & Sun, Jianguo & Kim, KyungMann, 2014. "Nonparametric tests for panel count data with unequal observation processes," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 103-111.
    19. Kwun Chuen Gary Chan & Mei-Cheng Wang, 2017. "Semiparametric Modeling and Estimation of the Terminal Behavior of Recurrent Marker Processes Before Failure Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 351-362, January.
    20. He, Haijin & Pan, Deng & Sun, Liuquan & Li, Yimei & Robison, Leslie L. & Song, Xinyuan, 2017. "Analysis of a fixed center effect additive rates model for recurrent event data," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 186-197.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:107:y:2017:i:c:p:120-130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.