IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v102y2011i9p1302-1314.html
   My bibliography  Save this article

Semiparametric analysis in double-sampling designs via empirical likelihood

Author

Listed:
  • Yu, Wen

Abstract

Double-sampling designs are commonly used in real applications when it is infeasible to collect exact measurements on all variables of interest. Two samples, a primary sample on proxy measures and a validation subsample on exact measures, are available in these designs. We assume that the validation sample is drawn from the primary sample by the Bernoulli sampling with equal selection probability. An empirical likelihood based approach is proposed to estimate the parameters of interest. By allowing the number of constraints to grow as the sample size goes to infinity, the resulting maximum empirical likelihood estimator is asymptotically normal and its limiting variance-covariance matrix reaches the semiparametric efficiency bound. Moreover, the Wilks-type result of convergence to chi-squared distribution for the empirical likelihood ratio based test is established. Some simulation studies are carried out to assess the finite sample performances of the new approach.

Suggested Citation

  • Yu, Wen, 2011. "Semiparametric analysis in double-sampling designs via empirical likelihood," Journal of Multivariate Analysis, Elsevier, vol. 102(9), pages 1302-1314, October.
  • Handle: RePEc:eee:jmvana:v:102:y:2011:i:9:p:1302-1314
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X11000704
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cattaneo, Matias D., 2010. "Efficient semiparametric estimation of multi-valued treatment effects under ignorability," Journal of Econometrics, Elsevier, vol. 155(2), pages 138-154, April.
    2. Zheng, Ming & Yu, Wen, 2011. "An empirical likelihood approach to data analysis under two-stage sampling designs," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 947-956, August.
    3. Matias D. Cattaneo, 2010. "multi-valued treatment effects," The New Palgrave Dictionary of Economics,, Palgrave Macmillan.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    2. Stojčić, Nebojša, 2021. "Social and private outcomes of green innovation incentives in European advancing economies," Technovation, Elsevier, vol. 104(C).
    3. Ay, Jean-Sauveur & Le Gallo, Julie, 2021. "The Signaling Values of Nested Wine Names," Working Papers 321851, American Association of Wine Economists.
    4. Katie Meara & Francesco Pastore & Allan Webster, 2020. "The gender pay gap in the USA: a matching study," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(1), pages 271-305, January.
    5. Shaibu Baanni Azumah & Abraham Zakaria & Rosaine N. Yegbemey & Philips A. Apalogta & Vishal Dagar & Abass Mahama, 2022. "Climate Smart Production, Gross Income, and Downstream Risk Characterization of Rice Farmers in Ghana," Journal of Agricultural Studies, Macrothink Institute, vol. 10(2), pages 13-35, June.
    6. Hong, Yan-Zhen & Chang, Hung-Hao & Dai, Yong-Wu, 2018. "Is deregulation of forest land use rights transactions associated with economic well-being and labor allocation of farm households? Empirical evidence in China," Land Use Policy, Elsevier, vol. 75(C), pages 694-701.
    7. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    8. Ma, Wanglin & Vatsa, Puneet & Zheng, Hongyun, 2022. "Cooking fuel choices and subjective well-being in rural China: Implications for a complete energy transition," Energy Policy, Elsevier, vol. 165(C).
    9. W K Newey & S Stouli, 2022. "Heterogeneous coefficients, control variables and identification of multiple treatment effects [Multivalued treatments and decomposition analysis: An application to the WIA program]," Biometrika, Biometrika Trust, vol. 109(3), pages 865-872.
    10. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    11. Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP77/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Kere, Eric Nazindigouba & Choumert, Johanna & Combes Motel, Pascale & Combes, Jean Louis & Santoni, Olivier & Schwartz, Sonia, 2017. "Addressing Contextual and Location Biases in the Assessment of Protected Areas Effectiveness on Deforestation in the Brazilian Amazônia," Ecological Economics, Elsevier, vol. 136(C), pages 148-158.
    13. Sokbae Lee & Bernard Salanié, 2018. "Identifying Effects of Multivalued Treatments," Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
    14. Ana I. Moro Egido & Maria Navarro, 2023. "Intergenerational Transmission of Economic Strain and High School Dropout," ThE Papers 23/07, Department of Economic Theory and Economic History of the University of Granada..
    15. Garbero, Alessandra & Songsermsawas, Tisorn, 2016. "Impact of modern irrigation on household production and welfare outcomes: Evidence from the PASIDP project in Ethiopia," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235949, Agricultural and Applied Economics Association.
    16. Salanié, Bernard & Lee, Sokbae, 2020. "Filtered and Unfiltered Treatment Effects with Targeting Instruments," CEPR Discussion Papers 15092, C.E.P.R. Discussion Papers.
    17. Jean-Louis Combes & Rasmane Ouedraogo & Sampawende J.-A. Tapsoba, 2016. "Structural shifts in aid dependency and fiscal policy in developing countries," Applied Economics, Taylor & Francis Journals, vol. 48(46), pages 4426-4446, October.
    18. Zheng, Yanqiao & Zhang, Xiaoqi & Zhu, Yu, 2021. "Overeducation, major mismatch, and return to higher education tiers: Evidence from novel data source of a major online recruitment platform in China," China Economic Review, Elsevier, vol. 66(C).
    19. Delprato, Marcos & Akyeampong, Kwame, 2019. "The effect of working on students’ learning in Latin America: Evidence from the learning survey TERCE," International Journal of Educational Development, Elsevier, vol. 70(C), pages 1-1.
    20. Adam Baybutt & Manu Navjeevan, 2023. "Doubly-Robust Inference for Conditional Average Treatment Effects with High-Dimensional Controls," Papers 2301.06283, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:102:y:2011:i:9:p:1302-1314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.