IDEAS home Printed from https://ideas.repec.org/a/inm/ordeca/v9y2012i2p138-145.html
   My bibliography  Save this article

Formulating Asymmetric Decision Problems as Decision Circuits

Author

Listed:
  • Debarun Bhattacharjya

    (Business Analytics and Math Sciences, IBM T.J. Watson Research Center, Yorktown Heights, New York 10598)

  • Ross D. Shachter

    (Management Science and Engineering, Stanford University, Stanford, California 94305)

Abstract

Decision analysis problems have traditionally been solved using either decision trees or influence diagrams. Although decision trees are better at handling asymmetry, prevalent in many reliability and risk analysis problems, influence diagrams can solve larger real-world problems by exploiting conditional independence. Decision circuits are graphical representations that combine the computational benefits of both graphical models. They are syntactic representations, i.e., they depict the summation, multiplication, and maximization operations required to solve a decision analysis problem. Previous work on decision circuits has focused on compiling them automatically from influence diagrams and describing the ways in which they can be used for efficient solution and sensitivity analysis. In this paper, we show how a decision circuit can be formulated directly, with or without the preprocessing of numbers that are assessed from the decision maker. By constructing two decision circuits for a nuclear reactor example, one using probabilities in inferred form and the other using probabilities in assessed form, we show how decision circuits generalize decision trees. The notion of coalescence is also made more explicit because computations for decision analysis can be saved and then reused in several ways. Because of their generality, decision circuits provide the analyst with a great deal of flexibility in problem formulation.

Suggested Citation

  • Debarun Bhattacharjya & Ross D. Shachter, 2012. "Formulating Asymmetric Decision Problems as Decision Circuits," Decision Analysis, INFORMS, vol. 9(2), pages 138-145, June.
  • Handle: RePEc:inm:ordeca:v:9:y:2012:i:2:p:138-145
    DOI: 10.1287/deca.1110.0226
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/deca.1110.0226
    Download Restriction: no

    File URL: https://libkey.io/10.1287/deca.1110.0226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shenoy, Prakash P., 2000. "Valuation network representation and solution of asymmetric decision problems," European Journal of Operational Research, Elsevier, vol. 121(3), pages 579-608, March.
    2. James E. Smith & Samuel Holtzman & James E. Matheson, 1993. "Structuring Conditional Relationships in Influence Diagrams," Operations Research, INFORMS, vol. 41(2), pages 280-297, April.
    3. Zvi Covaliu & Robert M. Oliver, 1995. "Representation and Solution of Decision Problems Using Sequential Decision Diagrams," Management Science, INFORMS, vol. 41(12), pages 1860-1881, December.
    4. Concha Bielza & Prakash P. Shenoy, 1999. "A Comparison of Graphical Techniques for Asymmetric Decision Problems," Management Science, INFORMS, vol. 45(11), pages 1552-1569, November.
    5. Prakash Shenoy, 1998. "Game Trees For Decision Analysis," Theory and Decision, Springer, vol. 44(2), pages 149-171, April.
    6. Ross D. Shachter, 1986. "Evaluating Influence Diagrams," Operations Research, INFORMS, vol. 34(6), pages 871-882, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jason R. W. Merrick & Fabrizio Ruggeri & Refik Soyer & L. Robin Keller, 2012. "From the Editors---Games and Decisions in Reliability and Risk," Decision Analysis, INFORMS, vol. 9(2), pages 81-85, June.
    2. Borgonovo, Emanuele & Tonoli, Fabio, 2014. "Decision-network polynomials and the sensitivity of decision-support models," European Journal of Operational Research, Elsevier, vol. 239(2), pages 490-503.
    3. González-Ortega, Jorge & Ríos Insua, David & Cano, Javier, 2019. "Adversarial risk analysis for bi-agent influence diagrams: An algorithmic approach," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1085-1096.
    4. Debarun Bhattacharjya & Léa A. Deleris, 2012. "From Reliability Block Diagrams to Fault Tree Circuits," Decision Analysis, INFORMS, vol. 9(2), pages 128-137, June.
    5. Thwaites, Peter A. & Smith, Jim Q., 2018. "A graphical method for simplifying Bayesian games," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 3-11.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bielza, Concha & Gómez, Manuel & Shenoy, Prakash P., 2011. "A review of representation issues and modeling challenges with influence diagrams," Omega, Elsevier, vol. 39(3), pages 227-241, June.
    2. Lopez-Diaz, Miguel & Rodriguez-Muniz, Luis J., 2007. "Influence diagrams with super value nodes involving imprecise information," European Journal of Operational Research, Elsevier, vol. 179(1), pages 203-219, May.
    3. Demirer, Riza & Shenoy, Prakash P., 2006. "Sequential valuation networks for asymmetric decision problems," European Journal of Operational Research, Elsevier, vol. 169(1), pages 286-309, February.
    4. Concha Bielza & Prakash P. Shenoy, 1999. "A Comparison of Graphical Techniques for Asymmetric Decision Problems," Management Science, INFORMS, vol. 45(11), pages 1552-1569, November.
    5. Thwaites, Peter A. & Smith, Jim Q., 2018. "A graphical method for simplifying Bayesian games," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 3-11.
    6. Shenoy, Prakash P., 2000. "Valuation network representation and solution of asymmetric decision problems," European Journal of Operational Research, Elsevier, vol. 121(3), pages 579-608, March.
    7. Prakash Shenoy, 1998. "Game Trees For Decision Analysis," Theory and Decision, Springer, vol. 44(2), pages 149-171, April.
    8. Borgonovo, Emanuele & Tonoli, Fabio, 2014. "Decision-network polynomials and the sensitivity of decision-support models," European Journal of Operational Research, Elsevier, vol. 239(2), pages 490-503.
    9. John M. Charnes & Prakash P. Shenoy, 2004. "Multistage Monte Carlo Method for Solving Influence Diagrams Using Local Computation," Management Science, INFORMS, vol. 50(3), pages 405-418, March.
    10. Ruth Y. Dicdican & Yacov Y. Haimes, 2005. "Relating multiobjective decision trees to the multiobjective risk impact analysis method," Systems Engineering, John Wiley & Sons, vol. 8(2), pages 95-108.
    11. Rodriguez-Muniz, Luis J. & Lopez-Diaz, Miguel & Gil, Maria Angeles, 2005. "Solving influence diagrams with fuzzy chance and value nodes," European Journal of Operational Research, Elsevier, vol. 167(2), pages 444-460, December.
    12. C. L. Smith & E. Borgonovo, 2007. "Decision Making During Nuclear Power Plant Incidents—A New Approach to the Evaluation of Precursor Events," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 1027-1042, August.
    13. Guo, Rui & Shenoy, Prakash P., 1996. "A note on Kirkwood's algebraic method for decision problems," European Journal of Operational Research, Elsevier, vol. 93(3), pages 628-638, September.
    14. Salo, Ahti & Andelmin, Juho & Oliveira, Fabricio, 2022. "Decision programming for mixed-integer multi-stage optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 299(2), pages 550-565.
    15. González-Ortega, Jorge & Ríos Insua, David & Cano, Javier, 2019. "Adversarial risk analysis for bi-agent influence diagrams: An algorithmic approach," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1085-1096.
    16. Regan, Peter J. & Holtzman, Samuel, 1995. "R&D Decision Advisor: An interactive approach to normative decision system model construction," European Journal of Operational Research, Elsevier, vol. 84(1), pages 116-133, July.
    17. Finn Jensen & Thomas Nielsen, 2013. "Probabilistic decision graphs for optimization under uncertainty," Annals of Operations Research, Springer, vol. 204(1), pages 223-248, April.
    18. repec:cup:judgdm:v:1:y:2006:i::p:162-173 is not listed on IDEAS
    19. Fernandez del Pozo, J. A. & Bielza, C. & Gomez, M., 2005. "A list-based compact representation for large decision tables management," European Journal of Operational Research, Elsevier, vol. 160(3), pages 638-662, February.
    20. Els Hannes & Diana Kusumastuti & Maikel Espinosa & Davy Janssens & Koen Vanhoof & Geert Wets, 2012. "Mental maps and travel behaviour: meanings and models," Journal of Geographical Systems, Springer, vol. 14(2), pages 143-165, April.
    21. Zitrou, Athena & Bedford, Tim & Walls, Lesley, 2010. "Bayes geometric scaling model for common cause failure rates," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 70-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ordeca:v:9:y:2012:i:2:p:138-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.