IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v102y2011i2p372-385.html
   My bibliography  Save this article

A profile-type smoothed score function for a varying coefficient partially linear model

Author

Listed:
  • Li, Gaorong
  • Feng, Sanying
  • Peng, Heng

Abstract

The varying coefficient partially linear model is considered in this paper. When the plug-in estimators of coefficient functions are used, the resulting smoothing score function becomes biased due to the slow convergence rate of nonparametric estimations. To reduce the bias of the resulting smoothing score function, a profile-type smoothed score function is proposed to draw inferences on the parameters of interest without using the quasi-likelihood framework, the least favorable curve, a higher order kernel or under-smoothing. The resulting profile-type statistic is still asymptotically Chi-squared under some regularity conditions. The results are then used to construct confidence regions for the parameters of interest. A simulation study is carried out to assess the performance of the proposed method and to compare it with the profile least-squares method. A real dataset is analyzed for illustration.

Suggested Citation

  • Li, Gaorong & Feng, Sanying & Peng, Heng, 2011. "A profile-type smoothed score function for a varying coefficient partially linear model," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 372-385, February.
  • Handle: RePEc:eee:jmvana:v:102:y:2011:i:2:p:372-385
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00213-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lixing Zhu & Liugen Xue, 2006. "Empirical likelihood confidence regions in a partially linear single‐index model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 549-570, June.
    2. Lai, T. L. & Robbins, Herbert & Wei, C. Z., 1979. "Strong consistency of least squares estimates in multiple regression II," Journal of Multivariate Analysis, Elsevier, vol. 9(3), pages 343-361, September.
    3. Li, Gaorong & Zhu, Lixing & Xue, Liugen & Feng, Sanying, 2010. "Empirical likelihood inference in partially linear single-index models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 718-732, March.
    4. Li, Qi, et al, 2002. "Semiparametric Smooth Coefficient Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 412-422, July.
    5. Lam, Clifford & Fan, Jianqing, 2008. "Profile-kernel likelihood inference with diverging number of parameters," LSE Research Online Documents on Economics 31548, London School of Economics and Political Science, LSE Library.
    6. Yingcun Xia, 2004. "Efficient estimation for semivarying-coefficient models," Biometrika, Biometrika Trust, vol. 91(3), pages 661-681, September.
    7. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
    8. Naisyin Wang & Raymond J. Carroll & Xihong Lin, 2005. "Efficient Semiparametric Marginal Estimation for Longitudinal/Clustered Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 147-157, March.
    9. You, Jinhong & Chen, Gemai, 2006. "Estimation of a semiparametric varying-coefficient partially linear errors-in-variables model," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 324-341, February.
    10. Zhu, Lixing & Lin, Lu & Cui, Xia & Li, Gaorong, 2010. "Bias-corrected empirical likelihood in a multi-link semiparametric model," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 850-868, April.
    11. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    12. Qiang Chen & Lu Lin & Lixing Zhu, 2010. "Bias-corrected smoothed score function for single-index models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 71(1), pages 45-58, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaoliang Wang & Liugen Xue & Gaorong Li & Fei Lu, 2019. "Spline estimator for ultra-high dimensional partially linear varying coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 657-677, June.
    2. Jun Zhang & Bingqing Lin & Yiping Yang, 2022. "Maximum nonparametric kernel likelihood estimation for multiplicative linear regression models," Statistical Papers, Springer, vol. 63(3), pages 885-918, June.
    3. Sanying Feng & Liugen Xue, 2014. "Bias-corrected statistical inference for partially linear varying coefficient errors-in-variables models with restricted condition," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 121-140, February.
    4. Lichun Wang & Peng Lai & Heng Lian, 2013. "Polynomial spline estimation for generalized varying coefficient partially linear models with a diverging number of components," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(8), pages 1083-1103, November.
    5. Zhang, Jun & Lin, Bingqing & Zhou, Yan, 2021. "Kernel density estimation for partial linear multivariate responses models," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    6. Li, Yujie & Li, Gaorong & Lian, Heng & Tong, Tiejun, 2017. "Profile forward regression screening for ultra-high dimensional semiparametric varying coefficient partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 133-150.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Gaorong & Lin, Lu & Zhu, Lixing, 2012. "Empirical likelihood for a varying coefficient partially linear model with diverging number of parameters," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 85-111.
    2. Li, Yujie & Li, Gaorong & Lian, Heng & Tong, Tiejun, 2017. "Profile forward regression screening for ultra-high dimensional semiparametric varying coefficient partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 133-150.
    3. Zhang, Jun & Gai, Yujie & Wu, Ping, 2013. "Estimation in linear regression models with measurement errors subject to single-indexed distortion," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 103-120.
    4. Mingqiu Wang & Peixin Zhao & Xiaoning Kang, 2020. "Structure identification for varying coefficient models with measurement errors based on kernel smoothing," Statistical Papers, Springer, vol. 61(5), pages 1841-1857, October.
    5. Peirong Xu & Jun Zhang & Xingfang Huang & Tao Wang, 2016. "Efficient estimation for marginal generalized partially linear single-index models with longitudinal data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 413-431, September.
    6. Fan, Guo-Liang & Liang, Han-Ying & Shen, Yu, 2016. "Penalized empirical likelihood for high-dimensional partially linear varying coefficient model with measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 183-201.
    7. Hu, Xuemei, 2017. "Semi-parametric inference for semi-varying coefficient panel data model with individual effects," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 262-281.
    8. Tang, Xingyu & Li, Jianbo & Lian, Heng, 2013. "Empirical likelihood for partially linear proportional hazards models with growing dimensions," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 22-32.
    9. Weihua Zhao & Riquan Zhang & Jicai Liu & Yazhao Lv, 2014. "Robust and efficient variable selection for semiparametric partially linear varying coefficient model based on modal regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 165-191, February.
    10. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    11. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    12. Delgado, Miguel A. & Rodriguez-Poo, Juan M. & Wolf, Michael, 2001. "Subsampling inference in cube root asymptotics with an application to Manski's maximum score estimator," Economics Letters, Elsevier, vol. 73(2), pages 241-250, November.
    13. Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2017. "Nonparametric estimation of dynamic discrete choice models for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 97-120.
    14. Taisuke Otsu & Myung Hwan Seo, 2014. "Asymptotics for maximum score method under general conditions," STICERD - Econometrics Paper Series 571, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    15. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    16. Manski, Charles F., 2023. "Probabilistic prediction for binary treatment choice: With focus on personalized medicine," Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
    17. repec:cep:stiecm:em/2012/559 is not listed on IDEAS
    18. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
    19. Lai, Peng & Wang, Qihua & Lian, Heng, 2012. "Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 422-432.
    20. Yingying Dong & Arthur Lewbel, 2015. "A Simple Estimator for Binary Choice Models with Endogenous Regressors," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 82-105, February.
    21. Chen, Le-Yu & Lee, Sokbae, 2019. "Breaking the curse of dimensionality in conditional moment inequalities for discrete choice models," Journal of Econometrics, Elsevier, vol. 210(2), pages 482-497.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:102:y:2011:i:2:p:372-385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.