IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v38y2013i2p190-215.html
   My bibliography  Save this article

Contrasting OLS and Quantile Regression Approaches to Student “Growth†Percentiles

Author

Listed:
  • Katherine Elizabeth Castellano

    (University of Iowa)

  • Andrew Dean Ho

    (Harvard Graduate School of Education)

Abstract

Regression methods can locate student test scores in a conditional distribution, given past scores. This article contrasts and clarifies two approaches to describing these locations in terms of readily interpretable percentile ranks or “conditional status percentile ranks.†The first is Betebenner’s quantile regression approach that results in “Student Growth Percentiles.†The second is an ordinary least squares (OLS) regression approach that involves expressing OLS regression residuals as percentile ranks. The study describes the empirical and conceptual similarity of the two metrics in simulated and real-data scenarios. The metrics contrast in their scale-transformation invariance and sample size requirements but are comparable in their dependence on the number of prior years used as conditioning variables. These results support guidelines for selecting the model that best fits the data and have implications for the interpretations of these percentiles ranks as “growth†measures.

Suggested Citation

  • Katherine Elizabeth Castellano & Andrew Dean Ho, 2013. "Contrasting OLS and Quantile Regression Approaches to Student “Growth†Percentiles," Journal of Educational and Behavioral Statistics, , vol. 38(2), pages 190-215, April.
  • Handle: RePEc:sae:jedbes:v:38:y:2013:i:2:p:190-215
    DOI: 10.3102/1076998611435413
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998611435413
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998611435413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    2. Holger Dette & Stanislav Volgushev, 2008. "Non‐crossing non‐parametric estimates of quantile curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 609-627, July.
    3. A. Capitanio & A. Azzalini & E. Stanghellini, 2003. "Graphical models for skew‐normal variates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 129-144, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernard, Carole & Czado, Claudia, 2015. "Conditional quantiles and tail dependence," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 104-126.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    2. David Mayston, 2015. "Analysing the effectiveness of public service producers with endogenous resourcing," Journal of Productivity Analysis, Springer, vol. 44(1), pages 115-126, August.
    3. Zareifard, Hamid & Rue, Håvard & Khaledi, Majid Jafari & Lindgren, Finn, 2016. "A skew Gaussian decomposable graphical model," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 58-72.
    4. Antonio Canale & Euloge Clovis Kenne Pagui & Bruno Scarpa, 2016. "Bayesian modeling of university first-year students' grades after placement test," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 3015-3029, December.
    5. Jorge M. Arevalillo & Hilario Navarro, 2019. "A stochastic ordering based on the canonical transformation of skew-normal vectors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 475-498, June.
    6. Sheng, Tianhong & Li, Bing & Solea, Eftychia, 2023. "On skewed Gaussian graphical models," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    7. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    8. Jorge M. Arevalillo & Hilario Navarro, 2020. "Data projections by skewness maximization under scale mixtures of skew-normal vectors," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 435-461, June.
    9. Anna Gottard & Simona Pacillo, 2007. "On the impact of contaminations in graphical Gaussian models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 343-354, February.
    10. Anna Gottard & Simona Pacillo, 2007. "On the impact of contaminations in graphical Gaussian models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 343-354, February.
    11. Mondal, Sagnik & Genton, Marc G., 2024. "A multivariate skew-normal-Tukey-h distribution," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    12. Ahmed Hossain & Joseph Beyene, 2015. "Application of skew-normal distribution for detecting differential expression to microRNA data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 477-491, March.
    13. Contreras-Reyes, Javier E., 2015. "Rényi entropy and complexity measure for skew-gaussian distributions and related families," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 84-91.
    14. Young, Phil D. & Kahle, David J. & Young, Dean M., 2017. "On the independence of singular multivariate skew-normal sub-vectors," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 58-62.
    15. Christian E. Galarza & Larissa A. Matos & Victor H. Lachos, 2022. "An EM algorithm for estimating the parameters of the multivariate skew-normal distribution with censored responses," METRON, Springer;Sapienza Università di Roma, vol. 80(2), pages 231-253, August.
    16. Christopher J. Adcock, 2022. "Properties and Limiting Forms of the Multivariate Extended Skew-Normal and Skew-Student Distributions," Stats, MDPI, vol. 5(1), pages 1-42, March.
    17. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    18. Marco Minozzo & Luca Bagnato, 2021. "A unified skew‐normal geostatistical factor model," Environmetrics, John Wiley & Sons, Ltd., vol. 32(4), June.
    19. Bernardi, Mauro, 2013. "Risk measures for skew normal mixtures," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1819-1824.
    20. repec:wrk:wrkemf:27 is not listed on IDEAS
    21. Lachos, Victor H. & Prates, Marcos O. & Dey, Dipak K., 2021. "Heckman selection-t model: Parameter estimation via the EM-algorithm," Journal of Multivariate Analysis, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:38:y:2013:i:2:p:190-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.