IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v100y2009i2p266-277.html
   My bibliography  Save this article

Estimators for alternating nonlinear autoregression

Author

Listed:
  • Müller, Ursula U.
  • Schick, Anton
  • Wefelmeyer, Wolfgang

Abstract

Suppose we observe a time series that alternates between different nonlinear autoregressive processes. We give conditions under which the model is locally asymptotically normal, derive a characterization of efficient estimators for differentiable functionals of the model, and use it to construct efficient estimators for the autoregression parameters and the innovation distributions. Surprisingly, the estimators for the autoregression parameters can be improved if we know that the innovation densities are equal.

Suggested Citation

  • Müller, Ursula U. & Schick, Anton & Wefelmeyer, Wolfgang, 2009. "Estimators for alternating nonlinear autoregression," Journal of Multivariate Analysis, Elsevier, vol. 100(2), pages 266-277, February.
  • Handle: RePEc:eee:jmvana:v:100:y:2009:i:2:p:266-277
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00117-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhattacharya, Rabi & Lee, Chanho, 1995. "On geometric ergodicity of nonlinear autoregressive models," Statistics & Probability Letters, Elsevier, vol. 22(4), pages 311-315, March.
    2. Anton Schick & Wolfgang Wefelmeyer, 2002. "Estimating the Innovation Distribution in Nonlinear Autoregressive Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(2), pages 245-260, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mika Meitz & Pentti Saikkonen, 2008. "Stability of nonlinear AR‐GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.
    2. Oliver Linton & Dajing Shang & Yang Yan, 2012. "Efficient estimation of conditional risk measures in a semiparametric GARCH model," CeMMAP working papers 25/12, Institute for Fiscal Studies.
    3. Rydlewski, Jerzy P. & Snarska, Małgorzata, 2014. "On geometric ergodicity of skewed—SVCHARME models," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 192-197.
    4. repec:lan:wpaper:2374 is not listed on IDEAS
    5. Andrews, Donald W.K. & Cheng, Xu, 2013. "Maximum likelihood estimation and uniform inference with sporadic identification failure," Journal of Econometrics, Elsevier, vol. 173(1), pages 36-56.
    6. Hernández-Lerma, Onésimo & Lasserre, Jean B., 1996. "Existence of bounded invariant probability densities for Markov chains," Statistics & Probability Letters, Elsevier, vol. 28(4), pages 359-366, August.
    7. Enwen Zhu & Jiezhong Zou & Zhenting Hou, 2007. "Analysis on adjoint non-recurrent property of nonlinear time series in random environment domain," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(2), pages 353-360, April.
    8. Natalie Neumeyer, 2009. "Smooth Residual Bootstrap for Empirical Processes of Non‐parametric Regression Residuals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 204-228, June.
    9. Escanciano, Juan Carlos & Jacho-Chávez, David T., 2012. "n-uniformly consistent density estimation in nonparametric regression models," Journal of Econometrics, Elsevier, vol. 167(2), pages 305-316.
    10. repec:lan:wpaper:2372 is not listed on IDEAS
    11. Isao Ishida & Virmantas Kvedaras, 2015. "Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity," Econometrics, MDPI, vol. 3(1), pages 1-53, January.
    12. Gabe Chandler & Wolfgang Polonik, 2017. "Residual Empirical Processes and Weighted Sums for Time-Varying Processes with Applications to Testing for Homoscedasticity," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 72-98, January.
    13. Oliver Linton & Dajing Shang & Yang Yan, 2012. "Efficient estimation of conditional risk measures in a semiparametric GARCH model," CeMMAP working papers CWP25/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Jean‐Pierre Stockis & Jürgen Franke & Joseph Tadjuidje Kamgaing, 2010. "On geometric ergodicity of CHARME models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(3), pages 141-152, May.
    15. Felix Chan & Michael McAleer & Marcelo C. Medeiros, 2015. "Structure and asymptotic theory for nonlinear models with GARCH erros," Economia, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics], vol. 16(1), pages 1-21.
    16. Carrasco, Marine, 2002. "Misspecified Structural Change, Threshold, and Markov-switching models," Journal of Econometrics, Elsevier, vol. 109(2), pages 239-273, August.
    17. Arash Nademi & Rahman Farnoosh, 2014. "Mixtures of autoregressive-autoregressive conditionally heteroscedastic models: semi-parametric approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(2), pages 275-293, February.
    18. Lu, Zudi & Jiang, Zhenyu, 2001. "L1 geometric ergodicity of a multivariate nonlinear AR model with an ARCH term," Statistics & Probability Letters, Elsevier, vol. 51(2), pages 121-130, January.
    19. An, H. Z. & Chen, S. G., 1997. "A note on the ergodicity of non-linear autoregressive model," Statistics & Probability Letters, Elsevier, vol. 34(4), pages 365-372, June.
    20. Eckhard Liebscher, 2005. "Towards a Unified Approach for Proving Geometric Ergodicity and Mixing Properties of Nonlinear Autoregressive Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(5), pages 669-689, September.
    21. Lee, Oesook & Shin, Dong Wan, 2000. "On geometric ergodicity of the MTAR process," Statistics & Probability Letters, Elsevier, vol. 48(3), pages 229-237, July.
    22. Linton, O. & Seo, M. & Whang, Y-J., 2020. "Testing Stochastic Dominance with Many Conditioning Variables," Cambridge Working Papers in Economics 2004, Faculty of Economics, University of Cambridge.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:2:p:266-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.