IDEAS home Printed from https://ideas.repec.org/a/eee/jeborg/v202y2022icp168-183.html
   My bibliography  Save this article

Risk preferences, gender effects and Bayesian econometrics

Author

Listed:
  • Alam, Jessica
  • Georgalos, Konstantinos
  • Rolls, Harrison

Abstract

Gender differences in decision making is a topic that has attracted much attention in the literature and the debate seems to be inconclusive. A method that is often used in the economics literature to account for gender effects is by estimating econometric structural models and testing the significance of the estimated parameters. In this paper we focus on estimations of preference models and we show how omitting to account for behavioural heterogeneity can lead to failures in identifying potential differences. Using data from risky choice experiments, we compare the traditional representative agent Maximum Likelihood Estimation approach against two more flexible inference methods that allow for heterogeneity at the individual level, the Maximum Simulated Likelihood Estimation, and the Hierarchical Bayesian modelling. We show how ignoring heterogeneity may lead to failures capturing gender differences and we suggest the use of Bayesian modelling to effectively estimate the underlying parameters.

Suggested Citation

  • Alam, Jessica & Georgalos, Konstantinos & Rolls, Harrison, 2022. "Risk preferences, gender effects and Bayesian econometrics," Journal of Economic Behavior & Organization, Elsevier, vol. 202(C), pages 168-183.
  • Handle: RePEc:eee:jeborg:v:202:y:2022:i:c:p:168-183
    DOI: 10.1016/j.jebo.2022.08.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167268122002876
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jebo.2022.08.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Filippin, Antonio & Crosetto, Paolo, 2014. "A Reconsideration of Gender Differences in Risk Attitudes," IZA Discussion Papers 8184, Institute of Labor Economics (IZA).
    2. Peter Brooks & Horst Zank, 2005. "Loss Averse Behavior," Journal of Risk and Uncertainty, Springer, vol. 31(3), pages 301-325, December.
    3. Joel Huber and Kenneth Train., 2000. "On the Similarity of Classical and Bayesian Estimates of Individual Mean Partworths," Economics Working Papers E00-289, University of California at Berkeley.
    4. Adam Booij & Bernard Praag & Gijs Kuilen, 2010. "A parametric analysis of prospect theory’s functionals for the general population," Theory and Decision, Springer, vol. 68(1), pages 115-148, February.
    5. Kelvin Balcombe & Iain Fraser, 2015. "Parametric preference functionals under risk in the gain domain: A Bayesian analysis," Journal of Risk and Uncertainty, Springer, vol. 50(2), pages 161-187, April.
    6. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    7. John D. Hey & Chris Orme, 2018. "Investigating Generalizations Of Expected Utility Theory Using Experimental Data," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 3, pages 63-98, World Scientific Publishing Co. Pte. Ltd..
    8. Jianying Qiu & Eva-Maria Steiger, 2011. "Understanding the Two Components of Risk Attitudes: An Experimental Analysis," Management Science, INFORMS, vol. 57(1), pages 193-199, January.
    9. Wilcox, Nathaniel T., 2011. "'Stochastically more risk averse:' A contextual theory of stochastic discrete choice under risk," Journal of Econometrics, Elsevier, vol. 162(1), pages 89-104, May.
    10. Hans-Martin von Gaudecker & Arthur van Soest & Erik Wengstrom, 2011. "Heterogeneity in Risky Choice Behavior in a Broad Population," American Economic Review, American Economic Association, vol. 101(2), pages 664-694, April.
    11. Ranoua Bouchouicha & Lachlan Deer & Ashraf Galal Eid & Peter McGee & Daniel Schoch & Hrvoje Stojic & Jolanda Ygosse-Battisti & Ferdinand M. Vieider, 2019. "Gender effects for loss aversion: Yes, no, maybe?," Journal of Risk and Uncertainty, Springer, vol. 59(2), pages 171-184, October.
    12. Anna Conte & John D. Hey & Peter G. Moffatt, 2018. "Mixture models of choice under risk," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 1, pages 3-12, World Scientific Publishing Co. Pte. Ltd..
    13. Ulrich Schmidt & Horst Zank, 2005. "What is Loss Aversion?," Journal of Risk and Uncertainty, Springer, vol. 30(2), pages 157-167, January.
    14. Aurélien Baillon & Han Bleichrodt & Vitalie Spinu, 2020. "Searching for the Reference Point," Management Science, INFORMS, vol. 66(1), pages 93-112, January.
    15. Henry Stott, 2006. "Cumulative prospect theory's functional menagerie," Journal of Risk and Uncertainty, Springer, vol. 32(2), pages 101-130, March.
    16. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    17. Charles A. Holt & Susan K. Laury, 2002. "Risk Aversion and Incentive Effects," American Economic Review, American Economic Association, vol. 92(5), pages 1644-1655, December.
    18. Eckel, Catherine C. & Grossman, Philip J., 2008. "Men, Women and Risk Aversion: Experimental Evidence," Handbook of Experimental Economics Results, in: Charles R. Plott & Vernon L. Smith (ed.), Handbook of Experimental Economics Results, edition 1, volume 1, chapter 113, pages 1061-1073, Elsevier.
    19. Chris Starmer, 2000. "Developments in Non-expected Utility Theory: The Hunt for a Descriptive Theory of Choice under Risk," Journal of Economic Literature, American Economic Association, vol. 38(2), pages 332-382, June.
    20. Ryan O. Murphy & Robert H. W. ten Brincke, 2018. "Hierarchical Maximum Likelihood Parameter Estimation for Cumulative Prospect Theory: Improving the Reliability of Individual Risk Parameter Estimates," Management Science, INFORMS, vol. 64(1), pages 308-328, January.
    21. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, January.
    22. Dale O. Stah, 2014. "Heterogeneity of Ambiguity Preferences," The Review of Economics and Statistics, MIT Press, vol. 96(4), pages 609-617, October.
    23. Hans-Martin von Gaudecker & Arthur van Soest & Erik Wengstrom, 2011. "Heterogeneity in Risky Choice Behavior in a Broad Population," American Economic Review, American Economic Association, vol. 101(2), pages 664-694, April.
    24. Alina Ferecatu & Ayse Önçüler, 2016. "Heterogeneous risk and time preferences," Journal of Risk and Uncertainty, Springer, vol. 53(1), pages 1-28, August.
    25. Antonio Filippin, 2022. "Gender differences in risk attitudes," IZA World of Labor, Institute of Labor Economics (IZA), pages 100-100, October.
    26. Antonio Filippin & Paolo Crosetto, 2016. "A Reconsideration of Gender Differences in Risk Attitudes," Management Science, INFORMS, vol. 62(11), pages 3138-3160, November.
    27. Olivier Toubia & Eric Johnson & Theodoros Evgeniou & Philippe Delquié, 2013. "Dynamic Experiments for Estimating Preferences: An Adaptive Method of Eliciting Time and Risk Parameters," Management Science, INFORMS, vol. 59(3), pages 613-640, June.
    28. repec:lmu:muenar:20868 is not listed on IDEAS
    29. Ferdinand M. Vieider & Mathieu Lefebvre & Ranoua Bouchouicha & Thorsten Chmura & Rustamdjan Hakimov & Michal Krawczyk & Peter Martinsson, 2015. "Common Components Of Risk And Uncertainty Attitudes Across Contexts And Domains: Evidence From 30 Countries," Journal of the European Economic Association, European Economic Association, vol. 13(3), pages 421-452, June.
    30. Rachel Croson & Uri Gneezy, 2009. "Gender Differences in Preferences," Journal of Economic Literature, American Economic Association, vol. 47(2), pages 448-474, June.
    31. Schmidt, Ulrich & Traub, Stefan, 2002. "An Experimental Test of Loss Aversion," Journal of Risk and Uncertainty, Springer, vol. 25(3), pages 233-249, November.
    32. Charness, Gary & Gneezy, Uri, 2012. "Strong Evidence for Gender Differences in Risk Taking," Journal of Economic Behavior & Organization, Elsevier, vol. 83(1), pages 50-58.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantinos Georgalos & Nathan Nabil, 2023. "Heuristics Unveiled," Working Papers 400814162, Lancaster University Management School, Economics Department.
    2. Liu, Kui & Meng, Chuyan & Yang, Shasha & Zhang, Guanglu, 2024. "Air pollution and individual risk preference: Evidence from China," Energy Economics, Elsevier, vol. 136(C).
    3. Konstantinos Georgalos & Nathan Nabil, 2023. "Testing Models of Complexity Aversion," Working Papers 400814269, Lancaster University Management School, Economics Department.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ranoua Bouchouicha & Lachlan Deer & Ashraf Galal Eid & Peter McGee & Daniel Schoch & Hrvoje Stojic & Jolanda Ygosse-Battisti & Ferdinand M. Vieider, 2019. "Gender effects for loss aversion: Yes, no, maybe?," Journal of Risk and Uncertainty, Springer, vol. 59(2), pages 171-184, October.
    2. Pau Balart & Lara Ezquerra & Iñigo Hernandez-Arenaz, 2022. "Framing effects on risk-taking behavior: evidence from a field experiment in multiple-choice tests," Experimental Economics, Springer;Economic Science Association, vol. 25(4), pages 1268-1297, September.
    3. Konstantinos Georgalos & Nathan Nabil, 2023. "Heuristics Unveiled," Working Papers 400814162, Lancaster University Management School, Economics Department.
    4. Kpegli, Yao Thibaut & Corgnet, Brice & Zylbersztejn, Adam, 2023. "All at once! A comprehensive and tractable semi-parametric method to elicit prospect theory components," Journal of Mathematical Economics, Elsevier, vol. 104(C).
    5. Crosetto, P. & Filippin, A., 2017. "Safe options induce gender differences in risk attitudes," Working Papers 2017-05, Grenoble Applied Economics Laboratory (GAEL).
    6. Ferdinand M. Vieider & Peter Martinsson & Pham Khanh Nam & Nghi Truong, 2019. "Risk preferences and development revisited," Theory and Decision, Springer, vol. 86(1), pages 1-21, February.
    7. Ferdinand M. Vieider & Clara Villegas-Palacio & Peter Martinsson & Milagros Mejía, 2016. "Risk Taking For Oneself And Others: A Structural Model Approach," Economic Inquiry, Western Economic Association International, vol. 54(2), pages 879-894, April.
    8. Colasante, Annarita & Riccetti, Luca, 2020. "Risk aversion, prudence and temperance: It is a matter of gap between moments," Journal of Behavioral and Experimental Finance, Elsevier, vol. 25(C).
    9. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    10. Ola Andersson & Håkan J. Holm & Jean-Robert Tyran & Erik Wengström, 2016. "Deciding for Others Reduces Loss Aversion," Management Science, INFORMS, vol. 62(1), pages 29-36, January.
    11. Georgalos, Konstantinos & Paya, Ivan & Peel, David A., 2021. "On the contribution of the Markowitz model of utility to explain risky choice in experimental research," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 527-543.
    12. Dixit, Vinayak V. & Harb, Rami C. & Martínez-Correa, Jimmy & Rutström, Elisabet E., 2015. "Measuring risk aversion to guide transportation policy: Contexts, incentives, and respondents," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 15-34.
    13. David Blake & Edmund Cannon & Douglas Wright, 2021. "Quantifying loss aversion: Evidence from a UK population survey," Journal of Risk and Uncertainty, Springer, vol. 63(1), pages 27-57, August.
    14. Neyse, Levent & Vieider, Ferdinand M. & Ring, Patrick & Probst, Catharina & Kaernbach, Christian & Eimeren, Thilo van & Schmidt, Ulrich, 2020. "Risk attitudes and digit ratio (2D:4D): Evidence from prospect theory," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, issue 60, pages 29-51.
    15. Glenn W. Harrison & J. Todd Swarthout, 2016. "Cumulative Prospect Theory in the Laboratory: A Reconsideration," Experimental Economics Center Working Paper Series 2016-04, Experimental Economics Center, Andrew Young School of Policy Studies, Georgia State University.
    16. Marc Oliver Rieger & Mei Wang & Thorsten Hens, 2015. "Risk Preferences Around the World," Management Science, INFORMS, vol. 61(3), pages 637-648, March.
    17. Filiz-Ozbay, Emel & Guryan, Jonathan & Hyndman, Kyle & Kearney, Melissa & Ozbay, Erkut Y., 2015. "Do lottery payments induce savings behavior? Evidence from the lab," Journal of Public Economics, Elsevier, vol. 126(C), pages 1-24.
    18. Luís Santos-Pinto & Adrian Bruhin & José Mata & Thomas Åstebro, 2015. "Detecting heterogeneous risk attitudes with mixed gambles," Theory and Decision, Springer, vol. 79(4), pages 573-600, December.
    19. Jonathan Chapman & Erik Snowberg & Stephanie Wang & Colin Camerer, 2018. "Loss Attitudes in the U.S. Population: Evidence from Dynamically Optimized Sequential Experimentation (DOSE)," NBER Working Papers 25072, National Bureau of Economic Research, Inc.
    20. Julius Pahlke & Sebastian Strasser & Ferdinand Vieider, 2015. "Responsibility effects in decision making under risk," Journal of Risk and Uncertainty, Springer, vol. 51(2), pages 125-146, October.

    More about this item

    Keywords

    Gender differences; Risk preferences; Loss aversion; Rank-dependent utility; Prospect theory; Maximum likelihood; Hierarchical Bayesian modelling;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • D91 - Microeconomics - - Micro-Based Behavioral Economics - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeborg:v:202:y:2022:i:c:p:168-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jebo .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.