IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v170y2024ics0148296323006884.html
   My bibliography  Save this article

Post diversity: A new lens of social media WOM

Author

Listed:
  • Dong, Xiaodan
  • Zhang, Zelin
  • Zhang, YiJing
  • Ao, Xiang
  • Tang, Tanya (Ya)

Abstract

Social media word of mouth (WOM) involves much interaction and engagement between users in their own networks. The feature of reposting on social media allows WOM to spread fast and easily. Original posts or reposts can be easily identified, perceived, and processed by social media users for purchase decisions. Then, we propose to investigate social media WOM post diversity, which reflects the variation of posts. Further, we propose that the relationship between social media WOM post diversity and sales can be conditional on the three previously established dimensions: volume, valence, and variance. The findings, reflecting approximately 1.5 million posts about 51 movies on a social media site, suggest that WOM post diversity, as measured by post entropy, positively associates with movie sales, contingent on low WOM volume, high valence, and high variance.

Suggested Citation

  • Dong, Xiaodan & Zhang, Zelin & Zhang, YiJing & Ao, Xiang & Tang, Tanya (Ya), 2024. "Post diversity: A new lens of social media WOM," Journal of Business Research, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:jbrese:v:170:y:2024:i:c:s0148296323006884
    DOI: 10.1016/j.jbusres.2023.114329
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296323006884
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2023.114329?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Artem Timoshenko & John R. Hauser, 2019. "Identifying Customer Needs from User-Generated Content," Marketing Science, INFORMS, vol. 38(1), pages 1-20, January.
    2. Jacquemin, Alexis P & Berry, Charles H, 1979. "Entropy Measure of Diversification and Corporate Growth," Journal of Industrial Economics, Wiley Blackwell, vol. 27(4), pages 359-369, June.
    3. Kaplan, Andreas M. & Haenlein, Michael, 2010. "Users of the world, unite! The challenges and opportunities of Social Media," Business Horizons, Elsevier, vol. 53(1), pages 59-68, January.
    4. Jaebong Son & Jintae Lee & Kai R. Larsen & Jiyoung Woo, 2020. "Understanding the uncertainty of disaster tweets and its effect on retweeting: The perspectives of uncertainty reduction theory and information entropy," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(10), pages 1145-1161, October.
    5. David Godes & Dina Mayzlin, 2004. "Using Online Conversations to Study Word-of-Mouth Communication," Marketing Science, INFORMS, vol. 23(4), pages 545-560, June.
    6. Sylvaine Castellano & Vincent Dutot, 2017. "Investigating the Influence of E-Word-of-Mouth on E-Reputation," International Studies of Management & Organization, Taylor & Francis Journals, vol. 47(1), pages 42-60, January.
    7. Dongling Huang & Lan Luo, 2016. "Consumer Preference Elicitation of Complex Products Using Fuzzy Support Vector Machine Active Learning," Marketing Science, INFORMS, vol. 35(3), pages 445-464, May.
    8. Wang, Feng & Liu, Xuefeng & Fang, Eric (Er), 2015. "User Reviews Variance, Critic Reviews Variance, and Product Sales: An Exploration of Customer Breadth and Depth Effects," Journal of Retailing, Elsevier, vol. 91(3), pages 372-389.
    9. Monic Sun, 2012. "How Does the Variance of Product Ratings Matter?," Management Science, INFORMS, vol. 58(4), pages 696-707, April.
    10. Stephen X. He & Samuel D. Bond, 2015. "Why Is the Crowd Divided? Attribution for Dispersion in Online Word of Mouth," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 41(6), pages 1509-1527.
    11. Zelin Zhang & Kejia Yang & Jonathan Z. Zhang & Robert W. Palmatier, 2023. "Uncovering Synergy and Dysergy in Consumer Reviews: A Machine Learning Approach," Management Science, INFORMS, vol. 69(4), pages 2339-2360, April.
    12. Brown, Jacqueline Johnson & Reingen, Peter H, 1987. "Social Ties and Word-of-Mouth Referral Behavior," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 14(3), pages 350-362, December.
    13. Langan, Ryan & Besharat, Ali & Varki, Sajeev, 2017. "The effect of review valence and variance on product evaluations: An examination of intrinsic and extrinsic cues," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 414-429.
    14. Pradeep K. Chintagunta & Shyam Gopinath & Sriram Venkataraman, 2010. "The Effects of Online User Reviews on Movie Box Office Performance: Accounting for Sequential Rollout and Aggregation Across Local Markets," Marketing Science, INFORMS, vol. 29(5), pages 944-957, 09-10.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Fu & Wei, Haiying & Wang, Xingyuan & Zhu, Zhenzhong & Chen, Haipeng Allan, 2023. "The influence of online review dispersion on consumers’ purchase intention: The moderating role of dialectical thinking," Journal of Business Research, Elsevier, vol. 165(C).
    2. Agnieszka Zablocki & Bodo Schlegelmilch & Michael J. Houston, 2019. "How valence, volume and variance of online reviews influence brand attitudes," AMS Review, Springer;Academy of Marketing Science, vol. 9(1), pages 61-77, June.
    3. Dominik Gutt, 2018. "In the Eye of the Beholder? Empirically Decomposing Different Economic Implications of the Online Rating Variance," Working Papers Dissertations 40, Paderborn University, Faculty of Business Administration and Economics.
    4. Xie, Guangming & Lü, Kevin & Gupta, Suraksha & Jiang, Yushi & Shi, Li, 2021. "How Dispersive Opinions Affect Consumer Decisions: Endowment Effect Guides Attributional Inferences," Journal of Retailing, Elsevier, vol. 97(4), pages 621-638.
    5. Yucheng Zhang & Zhiling Wang & Lin Xiao & Lijun Wang & Pei Huang, 2023. "Discovering the evolution of online reviews: A bibliometric review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.
    6. Kick, Markus, 2015. "Social Media Research: A Narrative Review," EconStor Preprints 182506, ZBW - Leibniz Information Centre for Economics.
    7. Wang, Fang & Menon, Kalyani & Ranaweera, Chatura, 2018. "Dynamic trends in online product ratings: A diagnostic utility explanation," Journal of Business Research, Elsevier, vol. 87(C), pages 80-89.
    8. Yuchi Zhang & David Godes, 2018. "Learning from Online Social Ties," Marketing Science, INFORMS, vol. 37(3), pages 425-444, May.
    9. Floyd, Kristopher & Freling, Ryan & Alhoqail, Saad & Cho, Hyun Young & Freling, Traci, 2014. "How Online Product Reviews Affect Retail Sales: A Meta-analysis," Journal of Retailing, Elsevier, vol. 90(2), pages 217-232.
    10. Tao Lu & May Yuan & Chong (Alex) Wang & Xiaoquan (Michael) Zhang, 2022. "Histogram Distortion Bias in Consumer Choices," Management Science, INFORMS, vol. 68(12), pages 8963-8978, December.
    11. (Kay) Byun, Kyung-ah & Ma, Minghui & Kim, Kevin & Kang, Taeghyun, 2021. "Buying a New Product with Inconsistent Product Reviews from Multiple Sources: The Role of Information Diagnosticity and Advertising," Journal of Interactive Marketing, Elsevier, vol. 55(C), pages 81-103.
    12. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    13. Marchand, André & Hennig-Thurau, Thorsten & Wiertz, Caroline, 2017. "Not all digital word of mouth is created equal: Understanding the respective impact of consumer reviews and microblogs on new product success," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 336-354.
    14. Akbari, Morteza & Foroudi, Pantea & Zaman Fashami, Rahime & Mahavarpour, Nasrin & Khodayari, Maryam, 2022. "Let us talk about something: The evolution of e-WOM from the past to the future," Journal of Business Research, Elsevier, vol. 149(C), pages 663-689.
    15. Guangming Xie & Wenbo Du & Hongping Yuan & Yushi Jiang, 2021. "Promoting Reviewer-Related Attribution: Moderately Complex Presentation of Mixed Opinions Activates the Analytic Process," Sustainability, MDPI, vol. 13(2), pages 1-28, January.
    16. Khim-Yong Goh & Cheng-Suang Heng & Zhijie Lin, 2013. "Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content," Information Systems Research, INFORMS, vol. 24(1), pages 88-107, March.
    17. Bella Rozenkrants & S Christian Wheeler & Baba Shiv & Gita JoharEditor & Derek RuckerAssociate Editor, 2017. "Self-Expression Cues in Product Rating Distributions: When People Prefer Polarizing Products," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 44(4), pages 759-777.
    18. Sungsik Park & Woochoel Shin & Jinhong Xie, 2021. "The Fateful First Consumer Review," Marketing Science, INFORMS, vol. 40(3), pages 481-507, May.
    19. Pauwels, Koen & Aksehirli, Zeynep & Lackman, Andrew, 2016. "Like the ad or the brand? Marketing stimulates different electronic word-of-mouth content to drive online and offline performance," International Journal of Research in Marketing, Elsevier, vol. 33(3), pages 639-655.
    20. Antioco, Michael & Coussement, Kristof, 2018. "Misreading of consumer dissatisfaction in online product reviews: Writing style as a cause for bias," International Journal of Information Management, Elsevier, vol. 38(1), pages 301-310.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:170:y:2024:i:c:s0148296323006884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.