IDEAS home Printed from https://ideas.repec.org/p/crs/wpaper/2013-27.html
   My bibliography  Save this paper

The Limits of Granularity Adjustments

Author

Listed:
  • Jean-David Fermanian

    (CREST (ENSAE))

Abstract

We provide a rigorous proof of granularity adjustment (GA) formulas to evaluate loss distributions and risk measures (value-at-risk) in the case of heterogenous portfolios, multiple systematic factors and random recoveries. As a significant improvement with respect to the literature, we detail all the technical conditions of validity and provide an upper bound of the remainder term at a finite distance. Moreover, we deal explicitly with the case of general loss distributions, possibly with masses. For some simple portfolio models, we prove empirically that the granularity adjustments do not always improve the infinitely granular first-order approximations. This stresses the importance of checking some conditions of regularity before relying on such techniques. Smoothing the underlying loss distributions through random recoveries or exposures improves the GA performances in general

Suggested Citation

  • Jean-David Fermanian, 2013. "The Limits of Granularity Adjustments," Working Papers 2013-27, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:2013-27
    as

    Download full text from publisher

    File URL: http://crest.science/RePEc/wpstorage/2013-27.pdf
    File Function: Crest working paper version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gordy, Michael B., 2000. "A comparative anatomy of credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 119-149, January.
    2. Jean-Paul Laurent & Jon Gregory, 2005. "Basket default swaps, CDOs and factor copulas," Post-Print hal-03679517, HAL.
    3. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    4. Michael B. Gordy & Sandeep Juneja, 2010. "Nested Simulation in Portfolio Risk Measurement," Management Science, INFORMS, vol. 56(10), pages 1833-1848, October.
    5. Gourieroux, C. & Laurent, J. P. & Scaillet, O., 2000. "Sensitivity analysis of Values at Risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 225-245, November.
    6. Hui Chen & Scott Joslin, 2012. "Generalized Transform Analysis of Affine Processes and Applications in Finance," The Review of Financial Studies, Society for Financial Studies, vol. 25(7), pages 2225-2256.
    7. Gordy, Michael B. & Marrone, James, 2012. "Granularity adjustment for mark-to-market credit risk models," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 1896-1910.
    8. Edward I. Altman & Brooks Brady & Andrea Resti & Andrea Sironi, 2005. "The Link between Default and Recovery Rates: Theory, Empirical Evidence, and Implications," The Journal of Business, University of Chicago Press, vol. 78(6), pages 2203-2228, November.
    9. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    10. Susanne Emmer & Dirk Tasche, 2003. "Calculating credit risk capital charges with the one-factor model," Papers cond-mat/0302402, arXiv.org, revised Jan 2005.
    11. Patrick Gagliardini & Christian Gouriéroux, 2011. "Approximate Derivative Pricing for Large Classes of Homogeneous Assets with Systematic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 237-280, Spring.
    12. Salah Amraoui & Laurent Cousot & Sebastien Hitier & Jean-Paul Laurent, 2012. "Pricing CDOs with state-dependent stochastic recovery rates," Quantitative Finance, Taylor & Francis Journals, vol. 12(8), pages 1219-1240, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fermanian, Jean-David, 2014. "The limits of granularity adjustments," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 9-25.
    2. M. B. Gordy & E. Lutkebohmert, 2013. "Granularity Adjustment for Regulatory Capital Assessment," International Journal of Central Banking, International Journal of Central Banking, vol. 9(3), pages 38-77, September.
    3. Gordy, Michael B. & Marrone, James, 2012. "Granularity adjustment for mark-to-market credit risk models," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 1896-1910.
    4. Avramidis, Panagiotis & Pasiouras, Fotios, 2015. "Calculating systemic risk capital: A factor model approach," Journal of Financial Stability, Elsevier, vol. 16(C), pages 138-150.
    5. Rösch, Daniel & Scheule, Harald, 2009. "Credit rating impact on CDO evaluation," Global Finance Journal, Elsevier, vol. 19(3), pages 235-251.
    6. Gürtler, Marc & Hibbeln, Martin & Vöhringer, Clemens, 2007. "Measuring concentration risk for regulatory purposes," Working Papers IF26V4, Technische Universität Braunschweig, Institute of Finance.
    7. Yi-Ping Chang & Jing-Xiu Lin & Chih-Tun Yu, 2016. "Calculating Value-at-Risk Using the Granularity Adjustment Method in the Portfolio Credit Risk Model with Random Loss Given Default," Journal of Economics and Management, College of Business, Feng Chia University, Taiwan, vol. 12(2), pages 157-176, August.
    8. Serge Darolles & Christian Gouriéroux & Emmanuelle Jay, 2012. "Robust Portfolio Allocation with Systematic Risk Contribution Restrictions," Working Papers 2012-35, Center for Research in Economics and Statistics.
    9. Yu Takata, 2018. "Application of Granularity Adjustment Approximation Method to Incremental Value-at-Risk in Concentrated Portfolios," Economics Bulletin, AccessEcon, vol. 38(4), pages 2320-2330.
    10. Maria Stefanova, 2012. "Recovery Risiko in der Kreditportfoliomodellierung," Springer Books, Springer, number 978-3-8349-4226-5, June.
    11. García-Céspedes, Rubén & Moreno, Manuel, 2017. "An approximate multi-period Vasicek credit risk model," Journal of Banking & Finance, Elsevier, vol. 81(C), pages 105-113.
    12. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    13. Gürtler, Marc & Heithecker, Dirk, 2004. "Modellkonsistente Bestimmung des LGD im IRB-Ansatz von Basel II," Working Papers FW08V3, Technische Universität Braunschweig, Institute of Finance.
    14. Puzanova, Natalia & Düllmann, Klaus, 2013. "Systemic risk contributions: A credit portfolio approach," Journal of Banking & Finance, Elsevier, vol. 37(4), pages 1243-1257.
    15. Bernardi, Enrico & Falangi, Federico & Romagnoli, Silvia, 2015. "A hierarchical copula-based world-wide valuation of sovereign risk," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 155-169.
    16. Daniel Rosch & Harald Scheule, 2008. "Credit Losses in Economic Downturns - Empirical Evidence for Hong Kong Mortgage Loans," Working Papers 152008, Hong Kong Institute for Monetary Research.
    17. Varotto, Simone, 2012. "Stress testing credit risk: The Great Depression scenario," Journal of Banking & Finance, Elsevier, vol. 36(12), pages 3133-3149.
    18. Benjamin Bade & Daniel Rösch & Harald Scheule, 2011. "Default and Recovery Risk Dependencies in a Simple Credit Risk Model," European Financial Management, European Financial Management Association, vol. 17(1), pages 120-144, January.
    19. Dirk Tasche, 2005. "Measuring sectoral diversification in an asymptotic multi-factor framework," Papers physics/0505142, arXiv.org, revised Jul 2006.
    20. Justin Sirignano & Kay Giesecke, 2019. "Risk Analysis for Large Pools of Loans," Management Science, INFORMS, vol. 65(1), pages 107-121, January.

    More about this item

    Keywords

    Credit portfolio model; Granularity adjustment; Value-at-risk; Fourier Transform;
    All these keywords.

    JEL classification:

    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2013-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General (email available below). General contact details of provider: https://edirc.repec.org/data/crestfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.