IDEAS home Printed from https://ideas.repec.org/p/fip/fedgfe/2010-37.html
   My bibliography  Save this paper

Granularity adjustment for mark-to-market credit risk models

Author

Abstract

The impact of undiversified idiosyncratic risk on value-at-risk and expected shortfall can be approximated analytically via a methodology known as granularity adjustment (GA). In principle, the GA methodology can be applied to any risk-factor model of portfolio risk. Thus far, however, analytical results have been derived only for simple models of actuarial loss, i.e., credit loss due to default. We demonstrate that the GA is entirely tractable for single-factor versions of a large class of models that includes all the commonly used mark-to-market approaches. Our approach covers both finite ratings-based models and models with a continuum of obligor states. We apply our methodology to CreditMetrics and KMV Portfolio Manager, as these are benchmark models for the finite and continuous classes, respectively. Comparative statics of the GA with respect to model parameters in CreditMetrics reveal striking and counterintuitive patterns. We explain these relationships with a stylized model of portfolio risk.

Suggested Citation

  • Michael B. Gordy & James Marrone, 2010. "Granularity adjustment for mark-to-market credit risk models," Finance and Economics Discussion Series 2010-37, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgfe:2010-37
    as

    Download full text from publisher

    File URL: http://www.federalreserve.gov/pubs/feds/2010/201037/201037abs.html
    Download Restriction: no

    File URL: http://www.federalreserve.gov/pubs/feds/2010/201037/201037pap.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Loffler, Gunter, 2004. "An anatomy of rating through the cycle," Journal of Banking & Finance, Elsevier, vol. 28(3), pages 695-720, March.
    2. Gourieroux, C. & Laurent, J. P. & Scaillet, O., 2000. "Sensitivity analysis of Values at Risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 225-245, November.
    3. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    4. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    5. Susanne Emmer & Dirk Tasche, 2003. "Calculating credit risk capital charges with the one-factor model," Papers cond-mat/0302402, arXiv.org, revised Jan 2005.
    6. Patrick Gagliardini & Christian Gouriéroux, 2011. "Approximate Derivative Pricing for Large Classes of Homogeneous Assets with Systematic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 237-280, Spring.
    7. Michael B. Gordy & Sandeep Juneja, 2010. "Nested Simulation in Portfolio Risk Measurement," Management Science, INFORMS, vol. 56(10), pages 1833-1848, October.
    8. Gordy, Michael B., 2000. "A comparative anatomy of credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 119-149, January.
    9. Gourieroux, C. & Jasiak, J., 2012. "Granularity adjustment for default risk factor model with cohorts," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1464-1477.
    10. Nikola Tarashev & Claudio Borio & Kostas Tsatsaronis, 2010. "Attributing systemic risk to individual institutions," BIS Working Papers 308, Bank for International Settlements.
    11. Frey, Rudiger & McNeil, Alexander J., 2002. "VaR and expected shortfall in portfolios of dependent credit risks: Conceptual and practical insights," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1317-1334, July.
    12. Altman, Edward I. & Rijken, Herbert A., 2004. "How rating agencies achieve rating stability," Journal of Banking & Finance, Elsevier, vol. 28(11), pages 2679-2714, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Justin Sirignano & Kay Giesecke, 2019. "Risk Analysis for Large Pools of Loans," Management Science, INFORMS, vol. 65(1), pages 107-121, January.
    2. Kupiec, Paul, 2015. "Capital for concentrated credit portfolios," Journal of Risk Management in Financial Institutions, Henry Stewart Publications, vol. 8(4), pages 314-322, October.
    3. García-Céspedes, Rubén & Moreno, Manuel, 2017. "An approximate multi-period Vasicek credit risk model," Journal of Banking & Finance, Elsevier, vol. 81(C), pages 105-113.
    4. Fermanian, Jean-David, 2014. "The limits of granularity adjustments," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 9-25.
    5. Jean-David Fermanian, 2013. "The Limits of Granularity Adjustments," Working Papers 2013-27, Center for Research in Economics and Statistics.
    6. Paul H. Kupiec, 2015. "Portfolio diversification in concentrated bond and loan portfolios," AEI Economics Working Papers 837343, American Enterprise Institute.
    7. Avramidis, Panagiotis & Pasiouras, Fotios, 2015. "Calculating systemic risk capital: A factor model approach," Journal of Financial Stability, Elsevier, vol. 16(C), pages 138-150.
    8. Lili Li & Jun Yang & Xin Zou, 2016. "A study of credit risk of Chinese listed companies: ZPP versus KMV," Applied Economics, Taylor & Francis Journals, vol. 48(29), pages 2697-2710, June.
    9. M. B. Gordy & E. Lutkebohmert, 2013. "Granularity Adjustment for Regulatory Capital Assessment," International Journal of Central Banking, International Journal of Central Banking, vol. 9(3), pages 38-77, September.
    10. Serge Darolles & Christian Gouriéroux & Emmanuelle Jay, 2012. "Robust Portfolio Allocation with Systematic Risk Contribution Restrictions," Working Papers 2012-35, Center for Research in Economics and Statistics.
    11. Ms. Sofiya Avramova & Mrs. Vanessa Le Lesle, 2012. "Revisiting Risk-Weighted Assets," IMF Working Papers 2012/090, International Monetary Fund.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fermanian, Jean-David, 2014. "The limits of granularity adjustments," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 9-25.
    2. Jean-David Fermanian, 2013. "The Limits of Granularity Adjustments," Working Papers 2013-27, Center for Research in Economics and Statistics.
    3. Avramidis, Panagiotis & Pasiouras, Fotios, 2015. "Calculating systemic risk capital: A factor model approach," Journal of Financial Stability, Elsevier, vol. 16(C), pages 138-150.
    4. M. B. Gordy & E. Lutkebohmert, 2013. "Granularity Adjustment for Regulatory Capital Assessment," International Journal of Central Banking, International Journal of Central Banking, vol. 9(3), pages 38-77, September.
    5. Maria Stefanova, 2012. "Recovery Risiko in der Kreditportfoliomodellierung," Springer Books, Springer, number 978-3-8349-4226-5, February.
    6. Puzanova, Natalia & Düllmann, Klaus, 2013. "Systemic risk contributions: A credit portfolio approach," Journal of Banking & Finance, Elsevier, vol. 37(4), pages 1243-1257.
    7. Gordy, Michael B. & Howells, Bradley, 2006. "Procyclicality in Basel II: Can we treat the disease without killing the patient?," Journal of Financial Intermediation, Elsevier, vol. 15(3), pages 395-417, July.
    8. Feng, D. & Gourieroux, C. & Jasiak, J., 2008. "The ordered qualitative model for credit rating transitions," Journal of Empirical Finance, Elsevier, vol. 15(1), pages 111-130, January.
    9. Klaus Düllmann & Nancy Masschelein, 2006. "Sector Concentration in Loan Portfolios and Economic Capital," Working Paper Research 105, National Bank of Belgium.
    10. Nikola A. Tarashev & Haibin Zhu, 2007. "Modelling and calibration errors in measures of portfolio credit risk," BIS Working Papers 230, Bank for International Settlements.
    11. Masschelein, Nancy & Düllmann, Klaus, 2006. "Sector concentration in loan portfolios and economic capital," Discussion Paper Series 2: Banking and Financial Studies 2006,09, Deutsche Bundesbank.
    12. Arturo Cortés Aguilar, 2011. "Estimación del residual de un bono respaldado por hipotecas mediante un modelo de riesgo crédito: una comparación de resultados de la teoría de cópulas y el modelo IRB de Basilea II en datos del merca," Revista de Administración, Finanzas y Economía (Journal of Management, Finance and Economics), Tecnológico de Monterrey, Campus Ciudad de México, vol. 5(1), pages 50-64.
    13. Rosen, Dan & Saunders, David, 2009. "Analytical methods for hedging systematic credit risk with linear factor portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 37-52, January.
    14. Siem Jan Koopman & André Lucas & Pieter Klaassen, 2002. "Pro-Cyclicality, Empirical Credit Cycles, and Capital Buffer Formation," Tinbergen Institute Discussion Papers 02-107/2, Tinbergen Institute.
    15. Marc Gürtler & Dirk Heithecker, 2006. "Modellkonsistente Bestimmung des LGD im IRB-Ansatz von Basel II," Schmalenbach Journal of Business Research, Springer, vol. 58(5), pages 554-587, August.
    16. Arndt Claußen & Sebastian Löhr & Daniel Rösch, 2014. "An analytical approach for systematic risk sensitivity of structured finance products," Review of Derivatives Research, Springer, vol. 17(1), pages 1-37, April.
    17. Magdalena Pisa & Dennis Bams & Christian Wolff, 2012. "Modeling default correlation in a US retail loan portfolio," LSF Research Working Paper Series 12-19, Luxembourg School of Finance, University of Luxembourg.
    18. Caballero, Diego & Lucas, André & Schwaab, Bernd & Zhang, Xin, 2020. "Risk endogeneity at the lender/investor-of-last-resort," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 283-297.
    19. Yu Takata, 2018. "Application of Granularity Adjustment Approximation Method to Incremental Value-at-Risk in Concentrated Portfolios," Economics Bulletin, AccessEcon, vol. 38(4), pages 2320-2330.
    20. Düllmann, Klaus & Kunisch, Michael & Küll, Jonathan, 2008. "Estimating asset correlations from stock prices or default rates: which method is superior?," Discussion Paper Series 2: Banking and Financial Studies 2008,04, Deutsche Bundesbank.

    More about this item

    Keywords

    Risk management; Econometric models;

    JEL classification:

    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:2010-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ryan Wolfslayer ; Keisha Fournillier (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.