IDEAS home Printed from https://ideas.repec.org/p/diw/diwwpp/dp1016.html
   My bibliography  Save this paper

Long Memory and Fractional Integration in High Frequency Financial Time Series

Author

Listed:
  • Guglielmo Maria Caporale
  • Luis A. Gil-Alana

Abstract

This paper analyses the long-memory properties of high frequency financial time series. It focuses on temporal aggregation and the influence that this might have on the degree of dependence of the series. Fractional integration or I(d) models are estimated with a variety of specifications for the error term. In brief, we find evidence that a lower degree of integration is associated with lower data frequencies. In particular, when the data are collected every 10 minutes there are several cases with values of d strictly smaller than 1, implying mean-reverting behaviour. This holds for all four series examined, namely Open, High, Low and Last observations for the British pound/US dollar spot exchange rate.

Suggested Citation

  • Guglielmo Maria Caporale & Luis A. Gil-Alana, 2010. "Long Memory and Fractional Integration in High Frequency Financial Time Series," Discussion Papers of DIW Berlin 1016, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwwpp:dp1016
    as

    Download full text from publisher

    File URL: https://www.diw.de/documents/publikationen/73/diw_01.c.357365.de/dp1016.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dunis, Christian & Kellard, Neil M. & Snaith, Stuart, 2013. "Forecasting EUR–USD implied volatility: The case of intraday data," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4943-4957.

    More about this item

    Keywords

    High frequency data; long memory; volatility persistence; structural breaks;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.