IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v78y2019icp144-151.html
   My bibliography  Save this article

The environmental cost of Peru's domestic air transport: An appraisal

Author

Listed:
  • Defilippi, Enzo

Abstract

The purpose of this paper is to estimate CO2 emissions from Peru's domestic air transport and how much they would be reduced if the network, currently centered around Lima's airport, was organized differently. Results show that, in 2014, Peruvian domestic air transport was responsible for emitting approximately 657,446 MT of CO2. This is equivalent to US$4.7 million, US$60.33 per one-way flight or 8.7 cents per km. If only the less-polluting aircrafts were used, CO2 emissions would be reduced by 2.8%. If instead of having to use Lima's airport as a hub there were direct connections among the country's seven busiest airports, yearly emissions would be reduced by 3.8%. A large part of the savings in this scenario (45%) would come from eliminating LTO cycles. Both scenarios combined would save the environment 40,893 MT of CO2 per year (6.2%).

Suggested Citation

  • Defilippi, Enzo, 2019. "The environmental cost of Peru's domestic air transport: An appraisal," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 144-151.
  • Handle: RePEc:eee:jaitra:v:78:y:2019:i:c:p:144-151
    DOI: 10.1016/j.jairtraman.2019.01.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699719300110
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2019.01.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Yongha & O’Kelly, Morton E., 2014. "Fuel burn rates of commercial passenger aircraft: variations by seat configuration and stage distance," Journal of Transport Geography, Elsevier, vol. 41(C), pages 137-147.
    2. Grampella, Mattia & Lo, Pak Lam & Martini, Gianmaria & Scotti, Davide, 2017. "The impact of technology progress on aviation noise and emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 525-540.
    3. O'Kelly, Morton E., 2014. "Air freight hubs in the FedEx system: Analysis of fuel use," Journal of Air Transport Management, Elsevier, vol. 36(C), pages 1-12.
    4. William Nordhaus, 2014. "Estimates of the Social Cost of Carbon: Concepts and Results from the DICE-2013R Model and Alternative Approaches," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(1), pages 000.
    5. Schipper, Youdi, 2004. "Environmental costs in European aviation," Transport Policy, Elsevier, vol. 11(2), pages 141-154, April.
    6. Givoni, Moshe & Rietveld, Piet, 2010. "The environmental implications of airlines' choice of aircraft size," Journal of Air Transport Management, Elsevier, vol. 16(3), pages 159-167.
    7. Cherie Lu & Peter Morrell, 2006. "Determination and Applications of Environmental Costs at Different Sized Airports – Aircraft Noise and Engine Emissions," Transportation, Springer, vol. 33(1), pages 45-61, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lo, Pak Lam & Martini, Gianmaria & Porta, Flavio & Scotti, Davide, 2020. "The determinants of CO2 emissions of air transport passenger traffic: An analysis of Lombardy (Italy)," Transport Policy, Elsevier, vol. 91(C), pages 108-119.
    2. Park, Yongha & O'Kelly, Morton E., 2018. "Examination of cost-efficient aircraft fleets using empirical operation data in US aviation markets," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 224-234.
    3. Grampella, Mattia & Martini, Gianmaria & Scotti, Davide & Zambon, Giovanni, 2016. "The factors affecting pollution and noise environmental costs of the current aircraft fleet: An econometric analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 310-325.
    4. Demir, Emrah & Huang, Yuan & Scholts, Sebastiaan & Van Woensel, Tom, 2015. "A selected review on the negative externalities of the freight transportation: Modeling and pricing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 95-114.
    5. Grampella, Mattia & Lo, Pak Lam & Martini, Gianmaria & Scotti, Davide, 2017. "The impact of technology progress on aviation noise and emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 525-540.
    6. Adler, Nicole & Martini, Gianmaria & Volta, Nicola, 2013. "Measuring the environmental efficiency of the global aviation fleet," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 82-100.
    7. Pels, Eric, 2021. "Optimality of the hub-spoke system: A review of the literature, and directions for future research," Transport Policy, Elsevier, vol. 104(C), pages 1-10.
    8. Dong, Qichen & Chen, Fanglin & Chen, Zhongfei, 2020. "Airports and air pollutions: Empirical evidence from China," Transport Policy, Elsevier, vol. 99(C), pages 385-395.
    9. Wu, Chuntao & He, Xiaohe & Dou, Yi, 2019. "Regional disparity and driving forces of CO2 emissions: Evidence from China's domestic aviation transport sector," Journal of Transport Geography, Elsevier, vol. 76(C), pages 71-82.
    10. Park, Yongha & O’Kelly, Morton E., 2014. "Fuel burn rates of commercial passenger aircraft: variations by seat configuration and stage distance," Journal of Transport Geography, Elsevier, vol. 41(C), pages 137-147.
    11. Defilippi, Enzo, 2018. "The environmental costs of Peru's domestic air transport: an appraisal ," Working Papers 18-01, Centro de Investigación, Universidad del Pacífico.
    12. Burns, Porter & Bowen, John, 2024. "Global network structure and emissions implications of long-thin airline routes," Journal of Air Transport Management, Elsevier, vol. 115(C).
    13. Lay Eng Teoh & Hooi Ling Khoo, 2016. "Fleet Planning Decision-Making: Two-Stage Optimization with Slot Purchase," Journal of Optimization, Hindawi, vol. 2016, pages 1-12, June.
    14. van der Ploeg, Frederick & Rezai, Armon, 2017. "Cumulative emissions, unburnable fossil fuel, and the optimal carbon tax," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 216-222.
    15. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    16. Robert J. R. Elliott & Ingmar Schumacher & Cees Withagen, 2020. "Suggestions for a Covid-19 Post-Pandemic Research Agenda in Environmental Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 1187-1213, August.
    17. Jonghyun Yoo & Robert Mendelsohn, 2018. "Sensitivity Of Mitigation To The Optimal Global Temperature: An Experiment With Dice," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 1-8, May.
    18. Rezai, Armon & van der Ploeg, Frederick, 2017. "Climate policies under climate model uncertainty: Max-min and min-max regret," Energy Economics, Elsevier, vol. 68(S1), pages 4-16.
    19. Andor, Mark A. & Gerster, Andreas & Peters, Jörg & Schmidt, Christoph M., 2020. "Social Norms and Energy Conservation Beyond the US," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    20. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:78:y:2019:i:c:p:144-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.