IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v36y2014icp101-109.html
   My bibliography  Save this article

Structured deplaning via simulation and optimization

Author

Listed:
  • Wald, Andrew
  • Harmon, Mark
  • Klabjan, Diego

Abstract

Deplaning naturally occurs row by row down the length of an aircraft. Using simulation and optimization, we design deplaning strategies (e.g., deplane by group and/or column) that significantly reduce the overall unstructured deplaning time. The evaluations derived from a combination of optimization and simulation were tested across several equipment types using data gathered through field observations for calibration.

Suggested Citation

  • Wald, Andrew & Harmon, Mark & Klabjan, Diego, 2014. "Structured deplaning via simulation and optimization," Journal of Air Transport Management, Elsevier, vol. 36(C), pages 101-109.
  • Handle: RePEc:eee:jaitra:v:36:y:2014:i:c:p:101-109
    DOI: 10.1016/j.jairtraman.2014.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699714000027
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2014.01.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eitan Bachmat & Daniel Berend & Luba Sapir & Steven Skiena & Natan Stolyarov, 2009. "Analysis of Airplane Boarding Times," Operations Research, INFORMS, vol. 57(2), pages 499-513, April.
    2. Van Landeghem, H. & Beuselinck, A., 2002. "Reducing passenger boarding time in airplanes: A simulation based approach," European Journal of Operational Research, Elsevier, vol. 142(2), pages 294-308, October.
    3. Steffen, Jason H., 2008. "Optimal boarding method for airline passengers," Journal of Air Transport Management, Elsevier, vol. 14(3), pages 146-150.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehran Sadeghi Lahijani & Tasvirul Islam & Ashok Srinivasan & Sirish Namilae, 2020. "Constrained Linear Movement Model (CALM): Simulation of passenger movement in airplanes," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-14, March.
    2. Michael Schultz & Michael Schmidt, 2018. "Advancements in Passenger Processes at Airports from Aircraft Perspective," Sustainability, MDPI, vol. 10(11), pages 1-15, October.
    3. Qiang, Sheng-Jie & Jia, Bin & Jiang, Rui & Huang, Qing-Xia & Radwan, Essam & Gao, Zi-You & Wang, Yu-Qing, 2016. "Symmetrical design of strategy-pairs for enplaning and deplaning an airplane," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 52-60.
    4. Namilae, S. & Srinivasan, A. & Mubayi, A. & Scotch, M. & Pahle, R., 2017. "Self-propelled pedestrian dynamics model: Application to passenger movement and infection propagation in airplanes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 248-260.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Camelia Delcea & Liviu-Adrian Cotfas & Nora Chiriță & Ionuț Nica, 2018. "A Two-Door Airplane Boarding Approach When Using Apron Buses," Sustainability, MDPI, vol. 10(10), pages 1-14, October.
    2. Qiang, Sheng-Jie & Jia, Bin & Jiang, Rui & Huang, Qing-Xia & Radwan, Essam & Gao, Zi-You & Wang, Yu-Qing, 2016. "Symmetrical design of strategy-pairs for enplaning and deplaning an airplane," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 52-60.
    3. Ren, Xinhui & Xu, Xiaobing, 2018. "Experimental analyses of airplane boarding based on interference classification," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 55-63.
    4. Michael Schultz & Jörg Fuchte, 2020. "Evaluation of Aircraft Boarding Scenarios Considering Reduced Transmissions Risks," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    5. Camelia Delcea & Liviu-Adrian Cotfas & Mostafa Salari & R. John Milne, 2018. "Investigating the Random Seat Boarding Method without Seat Assignments with Common Boarding Practices Using an Agent-Based Modeling," Sustainability, MDPI, vol. 10(12), pages 1-28, December.
    6. Milne, R. John & Delcea, Camelia & Cotfas, Liviu-Adrian & Salari, Mostafa, 2019. "New methods for two-door airplane boarding using apron buses," Journal of Air Transport Management, Elsevier, vol. 80(C), pages 1-1.
    7. Qiang, Sheng-Jie & Jia, Bin & Xie, Dong-Fan & Gao, Zi-You, 2014. "Reducing airplane boarding time by accounting for passengers' individual properties: A simulation based on cellular automaton," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 42-47.
    8. Camelia Delcea & Liviu-Adrian Cotfas & Ramona Paun, 2018. "Agent-Based Evaluation of the Airplane Boarding Strategies’ Efficiency and Sustainability," Sustainability, MDPI, vol. 10(6), pages 1-26, June.
    9. Jaehn, Florian & Neumann, Simone, 2015. "Airplane boarding," European Journal of Operational Research, Elsevier, vol. 244(2), pages 339-359.
    10. Michael Schultz & Michael Schmidt, 2018. "Advancements in Passenger Processes at Airports from Aircraft Perspective," Sustainability, MDPI, vol. 10(11), pages 1-15, October.
    11. Camelia Delcea & Liviu-Adrian Cotfas & Liliana Crăciun & Anca Gabriela Molanescu, 2018. "Are Seat and Aisle Interferences Affecting the Overall Airplane Boarding Time? An Agent-Based Approach," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    12. Salari, Mostafa & Milne, R. John & Delcea, Camelia & Kattan, Lina & Cotfas, Liviu-Adrian, 2020. "Social distancing in airplane seat assignments," Journal of Air Transport Management, Elsevier, vol. 89(C).
    13. R John Milne & Liviu-Adrian Cotfas & Camelia Delcea & Liliana Crăciun & Anca-Gabriela Molănescu, 2020. "Adapting the reverse pyramid airplane boarding method for social distancing in times of COVID-19," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-26, November.
    14. Steffen, Jason H. & Hotchkiss, Jon, 2012. "Experimental test of airplane boarding methods," Journal of Air Transport Management, Elsevier, vol. 18(1), pages 64-67.
    15. Bachmat, Eitan, 2019. "Airplane boarding meets express line queues," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1165-1177.
    16. Tang, Tie-Qiao & Yang, Shao-Peng & Ou, Hui & Chen, Liang & Huang, Hai-Jun, 2018. "An aircraft boarding model accounting for group behavior," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 182-189.
    17. Kisiel, Tomasz, 2020. "Resilience of passenger boarding strategies to priority fares offered by airlines," Journal of Air Transport Management, Elsevier, vol. 87(C).
    18. Milne, R. John & Salari, Mostafa, 2016. "Optimization of assigning passengers to seats on airplanes based on their carry-on luggage," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 104-110.
    19. Hélio Moreira & Luís P. Ferreira & Nuno O. Fernandes & Francisco J. G. Silva & Ana L. Ramos & Paulo Ávila, 2023. "A Simulation Study of Aircraft Boarding Strategies," Mathematics, MDPI, vol. 11(20), pages 1-13, October.
    20. Miura, Ayako & Nishinari, Katsuhiro, 2017. "A passenger distribution analysis model for the perceived time of airplane boarding/deboarding, utilizing an ex-Gaussian distribution," Journal of Air Transport Management, Elsevier, vol. 59(C), pages 44-49.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:36:y:2014:i:c:p:101-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.