IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v37y2021i1p125-133.html
   My bibliography  Save this article

The effect of spatiotemporal resolution on predictive policing model performance

Author

Listed:
  • Rummens, Anneleen
  • Hardyns, Wim

Abstract

Being able to anticipate crime such that new crime events can be dealt with effectively or prevented entirely, leads police forces worldwide to look at applying predictive policing, which provides predictions of times and places at risk for crime, such that proactive preventative measures can be taken. Ideally, predictive policing models predict crime at a high spatio-temporal level, while also providing optimal prediction performance. The main objective of this paper is therefore to evaluate the impact of varying grid resolution, temporal resolution and historical time frame on prediction performance. To investigate this, we analyse home burglary data from a large city in Belgium and predict new crime events using a range of parameter values, comparing the resulting prediction performances. Given the potential prediction performance costs associated with prediction at a high spatio-temporal resolution, consideration should be given to balance practical requirements with performance requirements.

Suggested Citation

  • Rummens, Anneleen & Hardyns, Wim, 2021. "The effect of spatiotemporal resolution on predictive policing model performance," International Journal of Forecasting, Elsevier, vol. 37(1), pages 125-133.
  • Handle: RePEc:eee:intfor:v:37:y:2021:i:1:p:125-133
    DOI: 10.1016/j.ijforecast.2020.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207020300558
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2020.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takaya Saito & Marc Rehmsmeier, 2015. "The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-21, March.
    2. Mohler, G. O. & Short, M. B. & Brantingham, P. J. & Schoenberg, F. P. & Tita, G. E., 2011. "Self-Exciting Point Process Modeling of Crime," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 100-108.
    3. Mohler, George, 2014. "Marked point process hotspot maps for homicide and gun crime prediction in Chicago," International Journal of Forecasting, Elsevier, vol. 30(3), pages 491-497.
    4. Alex Reinhart & Joel Greenhouse, 2018. "Self‐exciting point processes with spatial covariates: modelling the dynamics of crime," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1305-1329, November.
    5. G. O. Mohler & M. B. Short & Sean Malinowski & Mark Johnson & G. E. Tita & Andrea L. Bertozzi & P. J. Brantingham, 2015. "Randomized Controlled Field Trials of Predictive Policing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1399-1411, December.
    6. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    7. Wheeler, Andrew Palmer & Steenbeek, Wouter, 2020. "Mapping the risk terrain for crime using machine learning," SocArXiv xc538, Center for Open Science.
    8. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kajal Lahiri & Cheng Yang, 2023. "ROC and PRC Approaches to Evaluate Recession Forecasts," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(2), pages 119-148, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    2. Wei-Hsuan Lo-Ciganic & James L Huang & Hao H Zhang & Jeremy C Weiss & C Kent Kwoh & Julie M Donohue & Adam J Gordon & Gerald Cochran & Daniel C Malone & Courtney C Kuza & Walid F Gellad, 2020. "Using machine learning to predict risk of incident opioid use disorder among fee-for-service Medicare beneficiaries: A prognostic study," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-16, July.
    3. Amanda Fitzgerald & Naoise Mac Giollabhui & Louise Dolphin & Robert Whelan & Barbara Dooley, 2018. "Dissociable psychosocial profiles of adolescent substance users," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-16, August.
    4. Merlijn Breugel & Cancan Qi & Zhongli Xu & Casper-Emil T. Pedersen & Ilya Petoukhov & Judith M. Vonk & Ulrike Gehring & Marijn Berg & Marnix Bügel & Orestes A. Carpaij & Erick Forno & Andréanne Morin , 2022. "Nasal DNA methylation at three CpG sites predicts childhood allergic disease," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Chen, Jian & Katchova, Ani L. & Zhou, Chenxi, 2021. "Agricultural loan delinquency prediction using machine learning methods," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 24(5), May.
    6. Mohler, George & Carter, Jeremy & Raje, Rajeev, 2018. "Improving social harm indices with a modulated Hawkes process," International Journal of Forecasting, Elsevier, vol. 34(3), pages 431-439.
    7. Alex Reinhart & Joel Greenhouse, 2018. "Self‐exciting point processes with spatial covariates: modelling the dynamics of crime," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1305-1329, November.
    8. Alsenafi, Abdulaziz & Barbaro, Alethea B.T., 2018. "A convection–diffusion model for gang territoriality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 765-786.
    9. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    10. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    11. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    12. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    13. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    14. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    15. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    16. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    17. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    18. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    19. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    20. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:37:y:2021:i:1:p:125-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.