IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v19y2003i4p701-713.html
   My bibliography  Save this article

Forecasting the New York State economy: The coincident and leading indicators approach

Author

Listed:
  • Megna, Robert
  • Xu, Qiang

Abstract

No abstract is available for this item.

Suggested Citation

  • Megna, Robert & Xu, Qiang, 2003. "Forecasting the New York State economy: The coincident and leading indicators approach," International Journal of Forecasting, Elsevier, vol. 19(4), pages 701-713.
  • Handle: RePEc:eee:intfor:v:19:y:2003:i:4:p:701-713
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(03)00002-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James H. Stock & Mark W. Watson, 1993. "Business Cycles, Indicators, and Forecasting," NBER Books, National Bureau of Economic Research, Inc, number stoc93-1.
    2. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    3. Stock, James H. & Watson, Mark W. (ed.), 1993. "Business Cycles, Indicators, and Forecasting," National Bureau of Economic Research Books, University of Chicago Press, edition 1, number 9780226774886, August.
    4. Shin-ichi Fukuda & Takashi Onodera, 2001. "A New Composite Index of Coincident Economic Indicators in Japan: How can we improve the forecast performance? ," CIRJE F-Series CIRJE-F-101, CIRJE, Faculty of Economics, University of Tokyo.
    5. Theodore M. Crone, 1994. "New indexes track the state of the states," Business Review, Federal Reserve Bank of Philadelphia, issue Jan, pages 19-31.
    6. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Lehmann & Klaus Wohlrabe, 2014. "Regional economic forecasting: state-of-the-art methodology and future challenges," Economics and Business Letters, Oviedo University Press, vol. 3(4), pages 218-231.
    2. Eric Doviak & Sean MacDonald, 2010. "Forecasting the New York State Economy with "Terraced" VARs and Coincident Indices," New York Economic Review, New York State Economics Association (NYSEA), vol. 41(1), pages 14-34.
    3. Wong, Wing-Keung & McAleer, Michael, 2009. "Mapping the Presidential Election Cycle in US stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(11), pages 3267-3277.
    4. Lahiri, Kajal & Yang, Cheng, 2022. "Boosting tax revenues with mixed-frequency data in the aftermath of COVID-19: The case of New York," International Journal of Forecasting, Elsevier, vol. 38(2), pages 545-566.
    5. Beate Schirwitz & Christian Seiler & Klaus Wohlrabe, 2009. "Regionale Konjunkturzyklen in Deutschland – Teil II: Die Zyklendatierung," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(14), pages 24-31, July.
    6. Allen, P. Geoffrey & Morzuch, Bernard J., 2006. "Twenty-five years of progress, problems, and conflicting evidence in econometric forecasting. What about the next 25 years?," International Journal of Forecasting, Elsevier, vol. 22(3), pages 475-492.
    7. Pavel Vidal Alejandro & Lya Paola Sierra Suárez & Johana Sanabria Dominguez & Jaime Andres Collazos Rodríguez, 2015. "Indicador mensual de actividad económica (IMAE) para el Valle del Cauca," Borradores de Economia 13610, Banco de la Republica.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2014. "Short-term inflation projections: A Bayesian vector autoregressive approach," International Journal of Forecasting, Elsevier, vol. 30(3), pages 635-644.
    2. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    3. Tomasz Woźniak, 2016. "Bayesian Vector Autoregressions," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 49(3), pages 365-380, September.
    4. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Common Drifting Volatility in Large Bayesian VARs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
    5. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    6. Canova, Fabio & Ciccarelli, Matteo, 2004. "Forecasting and turning point predictions in a Bayesian panel VAR model," Journal of Econometrics, Elsevier, vol. 120(2), pages 327-359, June.
    7. Jushan Bai & Kunpeng Li & Lina Lu, 2016. "Estimation and Inference of FAVAR Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 620-641, October.
    8. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    9. Bloor, Chris & Matheson, Troy, 2011. "Real-time conditional forecasts with Bayesian VARs: An application to New Zealand," The North American Journal of Economics and Finance, Elsevier, vol. 22(1), pages 26-42, January.
    10. Reif Magnus, 2021. "Macroeconomic uncertainty and forecasting macroeconomic aggregates," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-20, April.
    11. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Large Vector Autoregressions with Asymmetric Priors," Working Papers 759, Queen Mary University of London, School of Economics and Finance.
    12. Garratt, Anthony & Lee, Kevin C & Pesaran, M. Hashem & Shin, Yongcheol, 1998. "A Structural Cointegrating VAR Approach to Macroeconometric Modelling," Cambridge Working Papers in Economics 9823, Faculty of Economics, University of Cambridge.
    13. James H. James & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," Working Papers 2005-2, Princeton University. Economics Department..
    14. Munehisa Kasuya & Tomoki Tanemura, 2000. "Small Scale Bayesian VAR Modeling of the Japanese Macro Economy Using the Posterior Information Criterion and Monte Carlo Experiments," Bank of Japan Working Paper Series Research and Statistics D, Bank of Japan.
    15. Heather Anderson & Giovanni Caggiano & Farshid Vahid & Benjamin Wong, 2020. "Sectoral Employment Dynamics in Australia and the COVID‐19 Pandemic," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 53(3), pages 402-414, September.
    16. Heather Anderson & Giovanni Caggiano & Farshid Vahid & Benjamin Wong, 2020. "Sectoral employment dynamics in Australia," CAMA Working Papers 2020-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    17. Enrique M. Quilis(1), "undated". "Modelos Bvar: Especificación, Estimación E Inferencia," Working Papers 8-02 Classification-JEL :, Instituto de Estudios Fiscales.
    18. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2021. "No‐arbitrage priors, drifting volatilities, and the term structure of interest rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 495-516, August.
    19. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    20. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Large Vector Autoregressions with Stochastic Volatility and Flexible Priors," Working Papers (Old Series) 1617, Federal Reserve Bank of Cleveland.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:19:y:2003:i:4:p:701-713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.