IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v101y2014icp78-102.html
   My bibliography  Save this article

Spatial system estimators for panel models: A sensitivity and simulation study

Author

Listed:
  • Liu, Shuangzhe
  • Ma, Tiefeng
  • Polasek, Wolfgang

Abstract

Panel models are popular models in applied sciences and the question of spatial errors has recently created the demand for spatial system estimation of panel models. In this paper we propose new diagnostic methods to explore if and how the spatial components will make significant differences of spatial estimates from non-spatial estimates of seemingly unrelated regression (SUR) systems. We apply a local sensitivity approach to study the behavior of spatial ordinary or generalized least-squares estimators in two spatial SUR system models: a spatial autoregressive regression model with SUR errors and a SUR model with spatial errors. Using matrix differential calculus we establish a sensitivity matrix for the spatial panel models. We show how a first-order Taylor approximation based on the non-spatial ordinary or generalized least-squares estimators can be used to approximate the least-squares estimators in spatial SUR models. In a simulation study we examine the approximation results and demonstrate their quality. We also try to find whether the SUR variance or the neighbourhood weight matrix has more impact on the estimates and their approximations.

Suggested Citation

  • Liu, Shuangzhe & Ma, Tiefeng & Polasek, Wolfgang, 2014. "Spatial system estimators for panel models: A sensitivity and simulation study," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 101(C), pages 78-102.
  • Handle: RePEc:eee:matcom:v:101:y:2014:i:c:p:78-102
    DOI: 10.1016/j.matcom.2014.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475414000512
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2014.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fortin, Ines & Hlouskova, Jaroslava, 2011. "Optimal asset allocation under linear loss aversion," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2974-2990, November.
    2. Berkelaar, Arjan & Kouwenberg, Roy, 2009. "From boom 'til bust: How loss aversion affects asset prices," Journal of Banking & Finance, Elsevier, vol. 33(6), pages 1005-1013, June.
    3. André Lucas & Arjen Siegmann, 2008. "The Effect of Shortfall as a Risk Measure for Portfolios with Hedge Funds," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 35(1‐2), pages 200-226, January.
    4. Gilberto A. Paula & Víctor Leiva & Michelli Barros & Shuangzhe Liu, 2012. "Robust statistical modeling using the Birnbaum‐Saunders‐t distribution applied to insurance," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 28(1), pages 16-34, January.
    5. Epstein, Larry G. & Zin, Stanley E., 1990. "'First-order' risk aversion and the equity premium puzzle," Journal of Monetary Economics, Elsevier, vol. 26(3), pages 387-407, December.
    6. Ulrich Schmidt & Chris Starmer & Robert Sugden, 2008. "Third-generation prospect theory," Journal of Risk and Uncertainty, Springer, vol. 36(3), pages 203-223, June.
    7. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    8. James Paul Lesage & Wolfgang Polasek, 2008. "Incorporating Transportation Network Structure in Spatial Econometric Models of Commodity Flows," Spatial Economic Analysis, Taylor & Francis Journals, vol. 3(2), pages 225-245.
    9. Manfred M. Fischer & Arthur Getis (ed.), 2010. "Handbook of Applied Spatial Analysis," Springer Books, Springer, number 978-3-642-03647-7, December.
    10. Jan R. Magnus & Andrey L. Vasnev, 2007. "Local sensitivity and diagnostic tests," Econometrics Journal, Royal Economic Society, vol. 10(1), pages 166-192, March.
    11. Harry H. Kelejian & Ingmar R. Prucha, 1997. "Estimation of Spatial Regression Models with Autoregressive Errors by Two-Stage Least Squares Procedures: A Serious Problem," International Regional Science Review, , vol. 20(1-2), pages 103-111, April.
    12. Neudecker, Heinz & Polasek, Wolfgang & Liu, Shuangzhe, 1995. "The heteroskedastic linear regression model and the Hadamard product a note," Journal of Econometrics, Elsevier, vol. 68(2), pages 361-366, August.
    13. Liu, Shuangzhe & Polasek, Wolfgang & Sellner, Richard, 2011. "Sensitivity Analysis of SAR Estimators," Economics Series 262, Institute for Advanced Studies.
    14. Jaroslava Hlouskova & Panagiotis Tsigaris, 2012. "Capital income taxation and risk taking under prospect theory," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 19(4), pages 554-573, August.
    15. Hwang, Soosung & Satchell, Steve E., 2010. "How loss averse are investors in financial markets?," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2425-2438, October.
    16. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    17. Xue Dong He & Xun Yu Zhou, 2011. "Portfolio Choice Under Cumulative Prospect Theory: An Analytical Treatment," Management Science, INFORMS, vol. 57(2), pages 315-331, February.
    18. Patrick Sevestre & Laszlo Matyas, 2008. "The Econometrics of Panel Data," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00279977, HAL.
    19. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    20. Paelinck, J., 1978. "Spatial econometrics," Economics Letters, Elsevier, vol. 1(1), pages 59-63.
    21. Nicholas Barberis & Ming Huang, 2001. "Mental Accounting, Loss Aversion, and Individual Stock Returns," Journal of Finance, American Finance Association, vol. 56(4), pages 1247-1292, August.
    22. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    23. Enrico Giorgi & Thorsten Hens, 2006. "Making prospect theory fit for finance," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(3), pages 339-360, September.
    24. Kakamu, Kazuhiko & Polasek, Wolfgang & Wago, Hajime, 2008. "Spatial interaction of crime incidents in Japan," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 276-282.
    25. Lung-fei Lee, 2003. "Best Spatial Two-Stage Least Squares Estimators for a Spatial Autoregressive Model with Autoregressive Disturbances," Econometric Reviews, Taylor & Francis Journals, vol. 22(4), pages 307-335.
    26. Kazuhiko Kakamu & Wolfgang Polasek & Hajime Wago, 2012. "Production technology and agglomeration for Japanese prefectures during 1991–2000," Papers in Regional Science, Wiley Blackwell, vol. 91(1), pages 29-41, March.
    27. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.
    28. Arjen Siegmann & André Lucas, 2005. "Discrete-Time Financial Planning Models Under Loss-Averse Preferences," Operations Research, INFORMS, vol. 53(3), pages 403-414, June.
    29. Nicholas Barberis & Ming Huang, 2001. "Mental Accounting, Loss Aversion, and Individual Stock Returns," NBER Working Papers 8190, National Bureau of Economic Research, Inc.
    30. László Mátyás & Patrick Sevestre (ed.), 2008. "The Econometrics of Panel Data," Advanced Studies in Theoretical and Applied Econometrics, Springer, number 978-3-540-75892-1.
    31. repec:umd:umdeco:kelepruc is not listed on IDEAS
    32. Fortin, Ines & Hlouskova, Jaroslava, 2012. "Optimal Asset Allocation under Quadratic Loss Aversion," Economics Series 291, Institute for Advanced Studies.
    33. André Lucas & Arjen Siegmann, 2008. "The Effect of Shortfall as a Risk Measure for Portfolios with Hedge Funds," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 35(1‐2), pages 200-226, January.
    34. Raymond J. G. M. Florax & Arno J. Van der Vlist, 2003. "Spatial Econometric Data Analysis: Moving Beyond Traditional Models," International Regional Science Review, , vol. 26(3), pages 223-243, July.
    35. J. Paul Elhorst, 2003. "Specification and Estimation of Spatial Panel Data Models," International Regional Science Review, , vol. 26(3), pages 244-268, July.
    36. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    37. Francisco J. Gomes, 2005. "Portfolio Choice and Trading Volume with Loss-Averse Investors," The Journal of Business, University of Chicago Press, vol. 78(2), pages 675-706, March.
    38. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    39. Kapoor, Mudit & Kelejian, Harry H. & Prucha, Ingmar R., 2007. "Panel data models with spatially correlated error components," Journal of Econometrics, Elsevier, vol. 140(1), pages 97-130, September.
    40. Liu, Shuangzhe & Neudecker, Heinz, 2009. "On pseudo maximum likelihood estimation for multivariate time series models with conditional heteroskedasticity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2556-2565.
    41. repec:wop:ubisop:0081 is not listed on IDEAS
    42. Zhang, Wenlang & Semmler, Willi, 2009. "Prospect theory for stock markets: Empirical evidence with time-series data," Journal of Economic Behavior & Organization, Elsevier, vol. 72(3), pages 835-849, December.
    43. Lee, Lung-fei & Yu, Jihai, 2010. "Some recent developments in spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 255-271, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaowen Dai & Libin Jin & Lei Shi & Cuiping Yang & Shuangzhe Liu, 2016. "Local influence analysis in general spatial models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 313-331, July.
    2. Liu, Shuangzhe & Leiva, Víctor & Zhuang, Dan & Ma, Tiefeng & Figueroa-Zúñiga, Jorge I., 2022. "Matrix differential calculus with applications in the multivariate linear model and its diagnostics," Journal of Multivariate Analysis, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fortin, Ines & Hlouskova, Jaroslava, 2012. "Optimal Asset Allocation under Quadratic Loss Aversion," Economics Series 291, Institute for Advanced Studies.
    2. Ines Fortin & Jaroslava Hlouskova, 2015. "Downside loss aversion: Winner or loser?," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 81(2), pages 181-233, April.
    3. Fortin, Ines & Hlouskova, Jaroslava, 2011. "Optimal asset allocation under linear loss aversion," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2974-2990, November.
    4. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    5. repec:asg:wpaper:1013 is not listed on IDEAS
    6. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    7. Fortin, Ines & Hlouskova, Jaroslava & Tsigaris, Panagiotis, 2016. "The Consumption-Investment Decision of a Prospect Theory Household," Economics Series 322, Institute for Advanced Studies.
    8. Hlouskova, Jaroslava & Fortin, Ines & Tsigaris, Panagiotis, 2017. "The consumption–investment decision of a prospect theory household: A two-period model," Journal of Mathematical Economics, Elsevier, vol. 70(C), pages 74-89.
    9. Herrera Gómez, Marcos, 2017. "Fundamentos de Econometría Espacial Aplicada [Fundamentals of Applied Spatial Econometrics]," MPRA Paper 80871, University Library of Munich, Germany.
    10. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    11. Jaroslava Hlouskova & Jana Mikocziova & Rudolf Sivak & Peter Tsigaris, 2014. "Capital Income Taxation and Risk-Taking under Prospect Theory: The Continuous Distribution Case," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 64(5), pages 374-391, November.
    12. Stephen Matthews & Daniel M. Parker, 2013. "Progress in Spatial Demography," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 28(10), pages 271-312.
    13. Debarsy, Nicolas & Ertur, Cem, 2010. "Testing for spatial autocorrelation in a fixed effects panel data model," Regional Science and Urban Economics, Elsevier, vol. 40(6), pages 453-470, November.
    14. Jaroslava Hlouskova & Panagiotis Tsigaris, 2012. "Capital income taxation and risk taking under prospect theory," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 19(4), pages 554-573, August.
    15. Michael Best & Robert Grauer & Jaroslava Hlouskova & Xili Zhang, 2014. "Loss-Aversion with Kinked Linear Utility Functions," Computational Economics, Springer;Society for Computational Economics, vol. 44(1), pages 45-65, June.
    16. Fortin, Ines & Hlouskova, Jaroslava, 2024. "Prospect theory and asset allocation," The Quarterly Review of Economics and Finance, Elsevier, vol. 94(C), pages 214-240.
    17. Jakusch, Sven Thorsten, 2017. "On the applicability of maximum likelihood methods: From experimental to financial data," SAFE Working Paper Series 148, Leibniz Institute for Financial Research SAFE, revised 2017.
    18. Jaroslava Hlouskova & Panagiotis Tsigaris & Anetta Caplanova & Rudolf Sivak, 2017. "A behavioral portfolio approach to multiple job holdings," Review of Economics of the Household, Springer, vol. 15(2), pages 669-689, June.
    19. Hans Dewachter & Romain Houssa & Priscilla Toffano, 2012. "Spatial propagation of macroeconomic shocks in Europe," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 148(2), pages 377-402, June.
    20. Kwok, Hon Ho, 2019. "Identification and estimation of linear social interaction models," Journal of Econometrics, Elsevier, vol. 210(2), pages 434-458.
    21. Bivand, Roger & Piras, Gianfranco, 2015. "Comparing Implementations of Estimation Methods for Spatial Econometrics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i18).

    More about this item

    Keywords

    Generalized and ordinary least-squares estimators; Panel systems with spatial components; Seemingly unrelated regression models; Spatial autoregressive regression and spatial error models; Taylor approximations;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:101:y:2014:i:c:p:78-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.