IDEAS home Printed from https://ideas.repec.org/a/eee/intell/v75y2019icp48-58.html
   My bibliography  Save this article

The causal influence of brain size on human intelligence: Evidence from within-family phenotypic associations and GWAS modeling

Author

Listed:
  • Lee, James J.
  • McGue, Matt
  • Iacono, William G.
  • Michael, Andrew M.
  • Chabris, Christopher F.

Abstract

There exists a moderate correlation between MRI-measured brain size and the general factor of IQ performance (g), but the question of whether the association reflects a theoretically important causal relationship or spurious confounding remains somewhat open. Previous small studies (n 〈100) looking for the persistence of this correlation within families failed to find a tendency for the sibling with the larger brain to obtain a higher test score. We studied the within-family relationship between brain volume and intelligence in the much larger sample provided by the Human Connectome Project (n = 1022) and found a highly significant correlation (disattenuated ρ = 0.18, p < .001). We replicated this result in the Minnesota Center for Twin and Family Research (n = 2698), finding a highly significant within-family correlation between head circumference and intelligence (disattenuated ρ = 0.19, p < .001). We also employed novel methods of causal inference relying on summary statistics from genome-wide association studies (GWAS) of head size (n ≈ 10,000) and measures of cognition (257,000 < n < 767,000). Using bivariate LD Score regression, we found a genetic correlation between intracranial volume (ICV) and years of education (EduYears) of 0.41 (p < .001). Using the Latent Causal Variable method, we found a genetic causality proportion of 0.72 (p < .001); thus the genetic correlation arises from an asymmetric pattern, extending to sub-significant loci, of genetic variants associated with ICV also being associated with EduYears but many genetic variants associated with EduYears not being associated with ICV. This is the pattern of genetic results expected from a causal effect of brain size on intelligence. These findings give reason to take up the hypothesis that the dramatic increase in brain volume over the course of human evolution has been the result of natural selection favoring general intelligence.

Suggested Citation

  • Lee, James J. & McGue, Matt & Iacono, William G. & Michael, Andrew M. & Chabris, Christopher F., 2019. "The causal influence of brain size on human intelligence: Evidence from within-family phenotypic associations and GWAS modeling," Intelligence, Elsevier, vol. 75(C), pages 48-58.
  • Handle: RePEc:eee:intell:v:75:y:2019:i:c:p:48-58
    DOI: 10.1016/j.intell.2019.01.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160289618301703
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.intell.2019.01.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chabris, C.F. & Lee, J.J. & Benjamin, D.J. & Beauchamp, J.P. & Glaeser, E.L. & Borst, G. & Pinker, S. & Laibson, D.I., 2013. "Why it is hard to find genes associated with social science traits: Theoretical and empirical considerations," American Journal of Public Health, American Public Health Association, vol. 103(SUPPL.1), pages 152-166.
    2. Matthew C Keller & Christine E Garver-Apgar & Margaret J Wright & Nicholas G Martin & Robin P Corley & Michael C Stallings & John K Hewitt & Brendan P Zietsch, 2013. "The Genetic Correlation between Height and IQ: Shared Genes or Assortative Mating?," PLOS Genetics, Public Library of Science, vol. 9(4), pages 1-10, April.
    3. Aysu Okbay & Jonathan P. Beauchamp & Mark Alan Fontana & James J. Lee & Tune H. Pers & Cornelius A. Rietveld & Patrick Turley & Guo-Bo Chen & Valur Emilsson & S. Fleur W. Meddens & Sven Oskarsson & Jo, 2016. "Genome-wide association study identifies 74 loci associated with educational attainment," Nature, Nature, vol. 533(7604), pages 539-542, May.
    4. Gignac, Gilles E. & Bates, Timothy C., 2017. "Brain volume and intelligence: The moderating role of intelligence measurement quality," Intelligence, Elsevier, vol. 64(C), pages 18-29.
    5. Tune H. Pers & Juha M. Karjalainen & Yingleong Chan & Harm-Jan Westra & Andrew R. Wood & Jian Yang & Julian C. Lui & Sailaja Vedantam & Stefan Gustafsson & Tonu Esko & Tim Frayling & Elizabeth K. Spel, 2015. "Biological interpretation of genome-wide association studies using predicted gene functions," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    6. Chabris, C. F. & Lee, J. J. & Cesarini, D. & Benjamin, D. J. & Laibson, David I., 2015. "The Fourth Law of Behavior Genetics," Scholarly Articles 30780203, Harvard University Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nagel, Mats, 2020. "Changing perspectives: Towards detailed phenotyping in genetics," Thesis Commons a4nz2, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pietro Biroli & Titus Galama & Stephanie von Hinke & Hans van Kippersluis & Kevin Thom, 2022. "Economics and Econometrics of Gene-Environment Interplay," Bristol Economics Discussion Papers 22/759, School of Economics, University of Bristol, UK.
    2. Nagel, Mats, 2020. "Changing perspectives: Towards detailed phenotyping in genetics," Thesis Commons a4nz2, Center for Open Science.
    3. Gianmarco Mignogna & Caitlin E. Carey & Robbee Wedow & Nikolas Baya & Mattia Cordioli & Nicola Pirastu & Rino Bellocco & Kathryn Fiuza Malerbi & Michel G. Nivard & Benjamin M. Neale & Raymond K. Walte, 2023. "Patterns of item nonresponse behaviour to survey questionnaires are systematic and associated with genetic loci," Nature Human Behaviour, Nature, vol. 7(8), pages 1371-1387, August.
    4. Cornelius A. Rietveld & Eric A.W. Slob & A. Roy Thurik, 2021. "A decade of research on the genetics of entrepreneurship: a review and view ahead," Small Business Economics, Springer, vol. 57(3), pages 1303-1317, October.
    5. Hans Kippersluis & Pietro Biroli & Rita Dias Pereira & Titus J. Galama & Stephanie Hinke & S. Fleur W. Meddens & Dilnoza Muslimova & Eric A. W. Slob & Ronald Vlaming & Cornelius A. Rietveld, 2023. "Overcoming attenuation bias in regressions using polygenic indices," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Mitchell, Brittany L. & Hansell, Narelle K. & McAloney, Kerrie & Martin, Nicholas G. & Wright, Margaret J. & Renteria, Miguel E. & Grasby, Katrina L., 2022. "Polygenic influences associated with adolescent cognitive skills," Intelligence, Elsevier, vol. 94(C).
    7. Brittany L. Mitchell & Jake R. Saklatvala & Nick Dand & Fiona A. Hagenbeek & Xin Li & Josine L. Min & Laurent Thomas & Meike Bartels & Jouke Hottenga & Michelle K. Lupton & Dorret I. Boomsma & Xianjun, 2022. "Genome-wide association meta-analysis identifies 29 new acne susceptibility loci," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Aysu Okbay & Jonathan P. Beauchamp & Mark Alan Fontana & James J. Lee & Tune H. Pers & Cornelius A. Rietveld & Patrick Turley & Guo-Bo Chen & Valur Emilsson & S. Fleur W. Meddens & Sven Oskarsson & Jo, 2016. "Genome-wide association study identifies 74 loci associated with educational attainment," Nature, Nature, vol. 533(7604), pages 539-542, May.
    9. Michael G. Levin & Noah L. Tsao & Pankhuri Singhal & Chang Liu & Ha My T. Vy & Ishan Paranjpe & Joshua D. Backman & Tiffany R. Bellomo & William P. Bone & Kiran J. Biddinger & Qin Hui & Ozan Dikilitas, 2022. "Genome-wide association and multi-trait analyses characterize the common genetic architecture of heart failure," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Gören, Erkan, 2017. "The persistent effects of novelty-seeking traits on comparative economic development," Journal of Development Economics, Elsevier, vol. 126(C), pages 112-126.
    11. Xu, Yilan & Briley, Daniel A. & Brown, Jeffrey R. & Roberts, Brent W., 2017. "Genetic and environmental influences on household financial distress," Journal of Economic Behavior & Organization, Elsevier, vol. 142(C), pages 404-424.
    12. Krammer, Sorin M.S. & Gören, Erkan, 2021. "Wired in? Genetic traits and entrepreneurship around the world," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    13. Fernandes, Heitor B.F. & Peñaherrera-Aguirre, Mateo & Woodley of Menie, Michael A. & Figueredo, Aurelio José, 2020. "Macroevolutionary patterns and selection modes for general intelligence (G) and for commonly used neuroanatomical volume measures in primates," Intelligence, Elsevier, vol. 80(C).
    14. Barban, Nicola & De Cao, Elisabetta & Oreffice, Sonia & Quintana-Domeque, Climent, 2021. "The effect of education on spousal education: A genetic approach," Labour Economics, Elsevier, vol. 71(C).
    15. von Hinke, Stephanie & Sørensen, Emil N., 2023. "The long-term effects of early-life pollution exposure: Evidence from the London smog," Journal of Health Economics, Elsevier, vol. 92(C).
    16. Viinikainen, Jutta & Bryson, Alex & Böckerman, Petri & Kari, Jaana T. & Lehtimäki, Terho & Raitakari, Olli & Viikari, Jorma & Pehkonen, Jaakko, 2022. "Does better education mitigate risky health behavior? A mendelian randomization study," Economics & Human Biology, Elsevier, vol. 46(C).
    17. Xiaofeng Zhu & Yihe Yang & Noah Lorincz-Comi & Gen Li & Amy R. Bentley & Paul S. de Vries & Michael Brown & Alanna C. Morrison & Charles N. Rotimi & W. James Gauderman & Dabeeru C. Rao & Hugues Aschar, 2024. "An approach to identify gene-environment interactions and reveal new biological insight in complex traits," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Chabris, C. F. & Lee, J. J. & Cesarini, D. & Benjamin, D. J. & Laibson, David I., 2015. "The Fourth Law of Behavior Genetics," Scholarly Articles 30780203, Harvard University Department of Economics.
    19. Morten Dybdahl Krebs & Gonçalo Espregueira Themudo & Michael Eriksen Benros & Ole Mors & Anders D. Børglum & David Hougaard & Preben Bo Mortensen & Merete Nordentoft & Michael J. Gandal & Chun Chieh F, 2021. "Associations between patterns in comorbid diagnostic trajectories of individuals with schizophrenia and etiological factors," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    20. Chris Bidner & John Knowles, 2018. "Matching for Social Mobility with Unobserved Heritable Characteristics," Discussion Papers dp18-05, Department of Economics, Simon Fraser University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intell:v:75:y:2019:i:c:p:48-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.