IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v104y2020i2d10.1007_s10182-020-00363-8.html
   My bibliography  Save this article

Nonparametric Archimedean generator estimation with implications for multiple testing

Author

Listed:
  • André Neumann

    (University of Bremen)

  • Thorsten Dickhaus

    (University of Bremen)

Abstract

In multiple testing, the family-wise error rate can be bounded under some conditions by the copula of the test statistics. Assuming that this copula is Archimedean, we consider two nonparametric Archimedean generator estimators. More specifically, we use the nonparametric estimator from Genest et al. (Test 20(2):223–256, 2011) and a slight modification thereof. In simulations, we compare the resulting multiple tests with the Bonferroni test and the multiple test derived from the true generator as baselines.

Suggested Citation

  • André Neumann & Thorsten Dickhaus, 2020. "Nonparametric Archimedean generator estimation with implications for multiple testing," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 309-323, June.
  • Handle: RePEc:spr:alstar:v:104:y:2020:i:2:d:10.1007_s10182-020-00363-8
    DOI: 10.1007/s10182-020-00363-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-020-00363-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-020-00363-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jens Stange & Taras Bodnar & Thorsten Dickhaus, 2015. "Uncertainty quantification for the family-wise error rate in multivariate copula models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(3), pages 281-310, July.
    2. Müller, Alfred & Scarsini, Marco, 2005. "Archimedean copulæ and positive dependence," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 434-445, April.
    3. René Schmidt & Andreas Faldum & Joachim Gerß, 2015. "Adaptive designs with arbitrary dependence structure based on Fisher’s combination test," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 427-447, September.
    4. Wolfgang Härdle & Ostap Okhrin, 2010. "De copulis non est disputandum," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 94(1), pages 1-31, March.
    5. Barbe, Philippe & Genest, Christian & Ghoudi, Kilani & Rémillard, Bruno, 1996. "On Kendall's Process," Journal of Multivariate Analysis, Elsevier, vol. 58(2), pages 197-229, August.
    6. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Rejoinder on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 290-292, August.
    7. Dickhaus, Thorsten & Gierl, Jakob, 2012. "Simultaneous test procedures in terms of p-value copulae," SFB 649 Discussion Papers 2012-049, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 223-256, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steffen Nico & Dickhaus Thorsten, 2020. "Optimizing effective numbers of tests by vine copula modeling," Dependence Modeling, De Gruyter, vol. 8(1), pages 172-185, January.
    2. Segers, Johan & Uyttendaele, Nathan, 2013. "Nonparametric estimation of the tree structure of a nested Archimedean copula," LIDAM Discussion Papers ISBA 2013009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Segers, Johan & Uyttendaele, Nathan, 2014. "Nonparametric estimation of the tree structure of a nested Archimedean copula," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 190-204.
    4. Steffen Nico & Dickhaus Thorsten, 2020. "Optimizing effective numbers of tests by vine copula modeling," Dependence Modeling, De Gruyter, vol. 8(1), pages 172-185, January.
    5. Elena Di Bernardino & Didier Rullière, 2015. "Estimation of multivariate critical layers: Applications to rainfall data," Post-Print hal-00940089, HAL.
    6. Antonov I. N. & Knyazev A. G. & Lepekhin O. A., 2016. "Copula Models of the Joint Distribution of Exchange Rates," World of economics and management / Vestnik NSU. Series: Social and Economics Sciences, Socionet, vol. 16(4), pages 20-38.
    7. Hofert, Marius, 2021. "Right-truncated Archimedean and related copulas," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 79-91.
    8. Stange, Jens & Dickhaus, Thorsten & Navarro, Arcadi & Schunk, Daniel, 2016. "Multiplicity- and dependency-adjusted p-values for control of the family-wise error rate," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 32-40.
    9. Elena Di Bernardino & Didier Rullière, 2016. "A note on upper-patched generators for Archimedean copulas," Working Papers hal-01347869, HAL.
    10. Ostap Okhrin & Anastasija Tetereva, 2017. "The Realized Hierarchical Archimedean Copula in Risk Modelling," Econometrics, MDPI, vol. 5(2), pages 1-31, June.
    11. Bücher, Axel & Dette, Holger & Volgushev, Stanislav, 2012. "A test for Archimedeanity in bivariate copula models," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 121-132.
    12. Chun, Hyonho & Lee, Myung Hee & Fleet, James C. & Oh, Ji Hwan, 2016. "Graphical models via joint quantile regression with component selection," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 162-171.
    13. Yeting Du & Johanna Nešlehová, 2013. "A moment-based test for extreme-value dependence," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(5), pages 673-695, July.
    14. Guglielmo D’Amico & Giovanni Masala & Filippo Petroni & Robert Adam Sobolewski, 2020. "Managing Wind Power Generation via Indexed Semi-Markov Model and Copula," Energies, MDPI, vol. 13(16), pages 1-21, August.
    15. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    16. Quessy, Jean-François & Bahraoui, Tarik, 2014. "Weak convergence of empirical and bootstrapped C-power processes and application to copula goodness-of-fit," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 16-36.
    17. Jorge Navarro & Hon Keung Tony Ng & Narayanaswamy Balakrishnan, 2012. "Parametric inference for component distributions from lifetimes of systems with dependent components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(7), pages 487-496, October.
    18. Elena Di Bernardino & Didier Rullière, 2017. "A note on upper-patched generators for Archimedean copulas," Post-Print hal-01347869, HAL.
    19. Di Bernardino Elena & Rullière Didier, 2013. "On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators," Dependence Modeling, De Gruyter, vol. 1(2013), pages 1-36, October.
    20. Elisa Perrone & Andreas Rappold & Werner G. Müller, 2017. "$$D_s$$ D s -optimality in copula models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(3), pages 403-418, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:104:y:2020:i:2:d:10.1007_s10182-020-00363-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.