IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v90y2020icp135-150.html
   My bibliography  Save this article

Parisian ruin with a threshold dividend strategy under the dual Lévy risk model

Author

Listed:
  • Yang, Chen
  • Sendova, Kristina P.
  • Li, Zhong

Abstract

We consider the threshold dividend strategy where a company’s surplus process is described by the dual Lévy risk model. Namely, the company chooses to pay dividends at a constant rate only when the surplus is above some nonnegative threshold. Classically, such a company is referred to be ruined immediately when the surplus level becomes negative. Recently, researchers investigate the Parisian ruin problem where the company is allowed to operate under negative surplus for a predetermined period known as the Parisian delay. With the help of the fluctuation identities of spectrally negative Lévy processes, we obtain an explicit expression of the expected discounted dividends until Parisian ruin in terms of the relevant scale functions and certain probabilities that need to be evaluated for each specific Lévy process. The optimal threshold level under such a threshold dividend strategy is deduced. Applications and numerical examples are given to illustrate the theoretical results and examine how the expected discounted aggregate dividends and the optimal threshold level change in response to different Parisian delays.

Suggested Citation

  • Yang, Chen & Sendova, Kristina P. & Li, Zhong, 2020. "Parisian ruin with a threshold dividend strategy under the dual Lévy risk model," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 135-150.
  • Handle: RePEc:eee:insuma:v:90:y:2020:i:c:p:135-150
    DOI: 10.1016/j.insmatheco.2019.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668719304196
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2019.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Avanzi, Benjamin & Cheung, Eric C.K. & Wong, Bernard & Woo, Jae-Kyung, 2013. "On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvency," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 98-113.
    2. Ng, Andrew C.Y., 2009. "On a dual model with a dividend threshold," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 315-324, April.
    3. Hongshuai Dai & Zaiming Liu & Nana Luan, 2010. "Optimal dividend strategies in a dual model with capital injections," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(1), pages 129-143, August.
    4. Avanzi, Benjamin & U. Gerber, Hans & S.W. Shiu, Elias, 2007. "Optimal dividends in the dual model," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 111-123, July.
    5. Yin, Chuancun & Wen, Yuzhen & Zhao, Yongxia, 2014. "On The Optimal Dividend Problem For A Spectrally Positive Lévy Process," ASTIN Bulletin, Cambridge University Press, vol. 44(3), pages 635-651, September.
    6. Yao, Dingjun & Yang, Hailiang & Wang, Rongming, 2011. "Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs," European Journal of Operational Research, Elsevier, vol. 211(3), pages 568-576, June.
    7. Irmina Czarna & Zbigniew Palmowski, 2014. "Dividend Problem with Parisian Delay for a Spectrally Negative Lévy Risk Process," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 239-256, April.
    8. Avanzi, Benjamin & Gerber, Hans U., 2008. "Optimal Dividends in the Dual Model with Diffusion," ASTIN Bulletin, Cambridge University Press, vol. 38(2), pages 653-667, November.
    9. Chuancun Yin & Yuzhen Wen & Yongxia Zhao, 2013. "On the optimal dividend problem for a spectrally positive Levy process," Papers 1302.2231, arXiv.org, revised Mar 2014.
    10. Florin Avram & Zbigniew Palmowski & Martijn R. Pistorius, 2007. "On the optimal dividend problem for a spectrally negative L\'{e}vy process," Papers math/0702893, arXiv.org.
    11. David Landriault & Jean-François Renaud & Xiaowen Zhou, 2014. "An Insurance Risk Model with Parisian Implementation Delays," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 583-607, September.
    12. Loeffen, Ronnie L. & Renaud, Jean-François & Zhou, Xiaowen, 2014. "Occupation times of intervals until first passage times for spectrally negative Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1408-1435.
    13. Gerber, Hans U. & Smith, Nathaniel, 2008. "Optimal dividends with incomplete information in the dual model," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 227-233, October.
    14. Cheung, Eric C.K. & Wong, Jeff T.Y., 2017. "On the dual risk model with Parisian implementation delays in dividend payments," European Journal of Operational Research, Elsevier, vol. 257(1), pages 159-173.
    15. Bayraktar, Erhan & Kyprianou, Andreas E. & Yamazaki, Kazutoshi, 2013. "On Optimal Dividends In The Dual Model," ASTIN Bulletin, Cambridge University Press, vol. 43(3), pages 359-372, September.
    16. Dimitrova, Dimitrina S. & Kaishev, Vladimir K. & Zhao, Shouqi, 2015. "On finite-time ruin probabilities in a generalized dual risk model with dependence," European Journal of Operational Research, Elsevier, vol. 242(1), pages 134-148.
    17. Ronnie Loeffen & Irmina Czarna & Zbigniew Palmowski, 2011. "Parisian ruin probability for spectrally negative L\'{e}vy processes," Papers 1102.4055, arXiv.org, revised Mar 2013.
    18. Afonso, Lourdes B. & Cardoso, Rui M.R. & Egídio dos Reis, Alfredo D., 2013. "Dividend problems in the dual risk model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 906-918.
    19. Dassios, Angelos & Wu, Shanle, 2008. "Parisian ruin with exponential claims," LSE Research Online Documents on Economics 32033, London School of Economics and Political Science, LSE Library.
    20. Min Song & Rong Wu & Xin Zhang, 2008. "Total duration of negative surplus for the dual model," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(6), pages 591-600, November.
    21. Sendova, Kristina P. & Yang, Chen & Zhang, Ruixi, 2018. "Dividend barrier strategy: Proceed with caution," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 157-164.
    22. Sheldon Lin, X. & E. Willmot, Gordon & Drekic, Steve, 2003. "The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 551-566, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aili Zhang & Ping Chen & Shuanming Li & Wenyuan Wang, 2020. "Risk Modelling on Liquidations with L\'{e}vy Processes," Papers 2007.01426, arXiv.org.
    2. Zhang, Aili & Chen, Ping & Li, Shuanming & Wang, Wenyuan, 2022. "Risk modelling on liquidations with Lévy processes," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    3. Li, Xin & Liu, Haibo & Tang, Qihe & Zhu, Jinxia, 2020. "Liquidation risk in insurance under contemporary regulatory frameworks," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 36-49.
    4. Ran Xu & Wenyuan Wang & Jose Garrido, 2022. "Optimal Dividend Strategy Under Parisian Ruin with Affine Penalty," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1385-1409, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheung, Eric C.K. & Wong, Jeff T.Y., 2017. "On the dual risk model with Parisian implementation delays in dividend payments," European Journal of Operational Research, Elsevier, vol. 257(1), pages 159-173.
    2. Ran Xu & Wenyuan Wang & Jose Garrido, 2022. "Optimal Dividend Strategy Under Parisian Ruin with Affine Penalty," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1385-1409, September.
    3. Chuancun Yin & Kam Chuen Yuen, 2014. "Optimal dividend problems for a jump-diffusion model with capital injections and proportional transaction costs," Papers 1409.0407, arXiv.org.
    4. Avanzi, Benjamin & Lau, Hayden & Wong, Bernard, 2020. "Optimal periodic dividend strategies for spectrally positive Lévy risk processes with fixed transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 315-332.
    5. Brinker, Leonie Violetta & Eisenberg, Julia, 2021. "Dividend optimisation: A behaviouristic approach," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 202-224.
    6. Czarna, Irmina & Pérez, José-Luis & Yamazaki, Kazutoshi, 2018. "Optimality of multi-refraction control strategies in the dual model," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 148-160.
    7. Zhang, Aili & Chen, Ping & Li, Shuanming & Wang, Wenyuan, 2022. "Risk modelling on liquidations with Lévy processes," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    8. Jos'e-Luis P'erez & Kazutoshi Yamazaki, 2016. "Hybrid continuous and periodic barrier strategies in the dual model: optimality and fluctuation identities," Papers 1612.02444, arXiv.org, revised Jan 2018.
    9. Yin, Chuancun & Wen, Yuzhen, 2013. "Optimal dividend problem with a terminal value for spectrally positive Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 769-773.
    10. Benjamin Avanzi & Hayden Lau & Bernard Wong, 2020. "Optimal periodic dividend strategies for spectrally positive L\'evy risk processes with fixed transaction costs," Papers 2003.13275, arXiv.org, revised May 2020.
    11. Pérez, José-Luis & Yamazaki, Kazutoshi, 2017. "On the optimality of periodic barrier strategies for a spectrally positive Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 1-13.
    12. Boxma, Onno & Frostig, Esther, 2018. "The dual risk model with dividends taken at arrival," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 83-92.
    13. Zhao, Yongxia & Chen, Ping & Yang, Hailiang, 2017. "Optimal periodic dividend and capital injection problem for spectrally positive Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 135-146.
    14. Chen, Shumin & Wang, Xi & Deng, Yinglu & Zeng, Yan, 2016. "Optimal dividend-financing strategies in a dual risk model with time-inconsistent preferences," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 27-37.
    15. Aili Zhang & Ping Chen & Shuanming Li & Wenyuan Wang, 2020. "Risk Modelling on Liquidations with L\'{e}vy Processes," Papers 2007.01426, arXiv.org.
    16. Ewa Marciniak & Zbigniew Palmowski, 2018. "On the Optimal Dividend Problem in the Dual Model with Surplus-Dependent Premiums," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 533-552, November.
    17. Goffard, Pierre-Olivier & Lefèvre, Claude, 2018. "Duality in ruin problems for ordered risk models," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 44-52.
    18. Yongwu Li & Zhongfei Li & Yan Zeng, 2016. "Equilibrium Dividend Strategy with Non-exponential Discounting in a Dual Model," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 699-722, February.
    19. Bayraktar, Erhan & Kyprianou, Andreas E. & Yamazaki, Kazutoshi, 2014. "Optimal dividends in the dual model under transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 133-143.
    20. Liu, Zhang & Chen, Ping & Hu, Yijun, 2020. "On the dual risk model with diffusion under a mixed dividend strategy," Applied Mathematics and Computation, Elsevier, vol. 376(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:90:y:2020:i:c:p:135-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.