IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v38y2008i02p653-667_01.html
   My bibliography  Save this article

Optimal Dividends in the Dual Model with Diffusion

Author

Listed:
  • Avanzi, Benjamin
  • Gerber, Hans U.

Abstract

In the dual model, the surplus of a company is a Lévy process with sample paths that are skip-free downwards. In this paper, the aggregate gains process is the sum of a shifted compound Poisson process and an independent Wiener process. By means of Laplace transforms, it is shown how the expectation of the discounted dividends until ruin can be calculated, if a barrier strategy is applied, and how the optimal dividend barrier can be determined. Conditions for optimality are discussed and several numerical illustrations are given. Furthermore, a family of models is analysed where the individual gain amount distribution is rescaled and compensated by a change of the Poisson parameter.

Suggested Citation

  • Avanzi, Benjamin & Gerber, Hans U., 2008. "Optimal Dividends in the Dual Model with Diffusion," ASTIN Bulletin, Cambridge University Press, vol. 38(2), pages 653-667, November.
  • Handle: RePEc:cup:astinb:v:38:y:2008:i:02:p:653-667_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100015324/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:38:y:2008:i:02:p:653-667_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.