Dynamic capital allocation with irreversible investments
Author
Abstract
Suggested Citation
DOI: 10.1016/j.insmatheco.2018.11.003
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gary Venter, 2004. "Capital Allocation Survey with Commentary," North American Actuarial Journal, Taylor & Francis Journals, vol. 8(2), pages 96-107.
- Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
- Major, John A., 2018. "Distortion measures and homogeneous financial derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 82-91.
- Jan Dhaene & Andreas Tsanakas & Emiliano A. Valdez & Steven Vanduffel, 2012.
"Optimal Capital Allocation Principles,"
Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 79(1), pages 1-28, March.
- Dhaene, Jan & Tsanakas, Andreas & Emiliano, Valdez & Steven, Vanduffel, 2009. "Optimal capital allocation principles," MPRA Paper 13574, University Library of Munich, Germany.
- Robert McDonald & Daniel Siegel, 1986. "The Value of Waiting to Invest," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 101(4), pages 707-727.
- Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
- Daniel Bauer & George Zanjani, 2016. "The Marginal Cost of Risk, Risk Measures, and Capital Allocation," Management Science, INFORMS, vol. 62(5), pages 1431-1457, May.
- Buch, A. & Dorfleitner, G., 2008. "Coherent risk measures, coherent capital allocations and the gradient allocation principle," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 235-242, February.
- Tsanakas, Andreas, 2004. "Dynamic capital allocation with distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 223-243, October.
- Michael Kalkbrener, 2005. "An Axiomatic Approach To Capital Allocation," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 425-437, July.
- Boonen, Tim J. & Tsanakas, Andreas & Wüthrich, Mario V., 2017. "Capital allocation for portfolios with non-linear risk aggregation," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 95-106.
- Laeven, Roger J. A. & Goovaerts, Marc J., 2004. "An optimization approach to the dynamic allocation of economic capital," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 299-319, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jilber Urbina & Miguel Santolino & Montserrat Guillen, 2021. "Covariance Principle for Capital Allocation: A Time-Varying Approach," Mathematics, MDPI, vol. 9(16), pages 1-13, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
- Boonen, Tim J. & De Waegenaere, Anja & Norde, Henk, 2020.
"A generalization of the Aumann–Shapley value for risk capital allocation problems,"
European Journal of Operational Research, Elsevier, vol. 282(1), pages 277-287.
- Boonen, T.J. & De Waegenaere, A.M.B. & Norde, H.W., 2012. "A Generalization of the Aumann-Shapley Value for Risk Capital Allocation Problems," Discussion Paper 2012-091, Tilburg University, Center for Economic Research.
- van Gulick, Gerwald & De Waegenaere, Anja & Norde, Henk, 2012.
"Excess based allocation of risk capital,"
Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 26-42.
- van Gulick, G. & De Waegenaere, A.M.B. & Norde, H.W., 2010. "Excess Based Allocation of Risk Capital," Discussion Paper 2010-123, Tilburg University, Center for Economic Research.
- Mohammed, Nawaf & Furman, Edward & Su, Jianxi, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of conditional tail expectation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 425-436.
- van Gulick, G. & De Waegenaere, A.M.B. & Norde, H.W., 2010. "Excess Based Allocation of Risk Capital," Other publications TiSEM f9231521-fea7-4524-8fea-8, Tilburg University, School of Economics and Management.
- Pesenti, Silvana M. & Tsanakas, Andreas & Millossovich, Pietro, 2018. "Euler allocations in the presence of non-linear reinsurance: Comment on Major (2018)," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 29-31.
- Jilber Urbina & Miguel Santolino & Montserrat Guillen, 2021. "Covariance Principle for Capital Allocation: A Time-Varying Approach," Mathematics, MDPI, vol. 9(16), pages 1-13, August.
- Kamil J. Mizgier & Joseph M. Pasia, 2016. "Multiobjective optimization of credit capital allocation in financial institutions," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(4), pages 801-817, December.
- Nawaf Mohammed & Edward Furman & Jianxi Su, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of Conditional Tail Expectation," Papers 2102.05003, arXiv.org, revised Aug 2021.
- Kull, Andreas, 2009. "Sharing Risk – An Economic Perspective," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 591-613, November.
- Grechuk, Bogdan, 2023. "Extended gradient of convex function and capital allocation," European Journal of Operational Research, Elsevier, vol. 305(1), pages 429-437.
- Cosimo Munari & Stefan Weber & Lutz Wilhelmy, 2023. "Capital requirements and claims recovery: A new perspective on solvency regulation," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 329-380, June.
- Stephen J. Mildenhall, 2017. "Actuarial Geometry," Risks, MDPI, vol. 5(2), pages 1-44, June.
- Boonen, T.J. & De Waegenaere, A.M.B. & Norde, H.W., 2012. "A Generalization of the Aumann-Shapley Value for Risk Capital Allocation Problems," Other publications TiSEM 2c502ef8-76f0-47f5-ab45-1, Tilburg University, School of Economics and Management.
- Koike, Takaaki & Hofert, Marius, 2021. "Modality for scenario analysis and maximum likelihood allocation," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 24-43.
- Major, John A., 2018. "Distortion measures and homogeneous financial derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 82-91.
- Jaume Belles-Sampera & Montserrat Guillen & Miguel Santolino, 2023. "Haircut Capital Allocation as the Solution of a Quadratic Optimisation Problem," Mathematics, MDPI, vol. 11(18), pages 1-17, September.
- Dóra Balog, 2017. "Capital Allocation in the Insurance Sector," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 16(3), pages 74-97.
- Boonen, Tim J. & Guillen, Montserrat & Santolino, Miguel, 2019. "Forecasting compositional risk allocations," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 79-86.
- Alexandru V. Asimit & Raluca Vernic & Riċardas Zitikis, 2013. "Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model," Risks, MDPI, vol. 1(1), pages 1-20, March.
More about this item
Keywords
Capital allocation; Diversification; Real-option; Portfolio optimization;All these keywords.
JEL classification:
- C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
- D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
- D92 - Microeconomics - - Micro-Based Behavioral Economics - - - Intertemporal Firm Choice, Investment, Capacity, and Financing
- G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:85:y:2019:i:c:p:138-152. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.