IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v91y2020i3d10.1007_s00186-019-00687-5.html
   My bibliography  Save this article

Optimal control of an objective functional with non-linearity between the conditional expectations: solutions to a class of time-inconsistent portfolio problems

Author

Listed:
  • Esben Kryger
  • Maj-Britt Nordfang
  • Mogens Steffensen

Abstract

We present a modified verification theorem for the equilibrium control of a general class of portfolio problems. The general class of portfolio problems studied in this paper, is characterized by an objective where the investor seeks to maximize a functional of two conditional expectations of terminal wealth. The objective functional is allowed to be non-linear in the conditional expectations, and thus the problem class is in general terms time-inconsistent. In addition, we provide a corrected proof of the verification theorem and apply the theorem to a number of quadratic, time-inconsistent portfolio problems and determine their solutions. Some of the quadratic portfolio problems have not previously been solved analytically.

Suggested Citation

  • Esben Kryger & Maj-Britt Nordfang & Mogens Steffensen, 2020. "Optimal control of an objective functional with non-linearity between the conditional expectations: solutions to a class of time-inconsistent portfolio problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(3), pages 405-438, June.
  • Handle: RePEc:spr:mathme:v:91:y:2020:i:3:d:10.1007_s00186-019-00687-5
    DOI: 10.1007/s00186-019-00687-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-019-00687-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-019-00687-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. H. Strotz, 1955. "Myopia and Inconsistency in Dynamic Utility Maximization," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 23(3), pages 165-180.
    2. Mogens Steffensen, 2011. "Optimal consumption and investment under time-varying relative risk aversion," Post-Print hal-00796302, HAL.
    3. Zeng, Yan & Li, Zhongfei, 2011. "Optimal time-consistent investment and reinsurance policies for mean-variance insurers," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 145-154, July.
    4. Wu, Huiling & Zhang, Ling & Chen, Hua, 2015. "Nash equilibrium strategies for a defined contribution pension management," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 202-214.
    5. Huiling Wu, 2013. "Time-Consistent Strategies for a Multiperiod Mean-Variance Portfolio Selection Problem," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-13, April.
    6. Sun, Jingyun & Li, Zhongfei & Zeng, Yan, 2016. "Precommitment and equilibrium investment strategies for defined contribution pension plans under a jump–diffusion model," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 158-172.
    7. Wang, J. & Forsyth, P.A., 2011. "Continuous time mean variance asset allocation: A time-consistent strategy," European Journal of Operational Research, Elsevier, vol. 209(2), pages 184-201, March.
    8. repec:dau:papers:123456789/11473 is not listed on IDEAS
    9. Wei, J. & Wong, K.C. & Yam, S.C.P. & Yung, S.P., 2013. "Markowitz’s mean–variance asset–liability management with regime switching: A time-consistent approach," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 281-291.
    10. Ying Hu & Hanqing Jin & Xun Yu Zhou, 2017. "Time-Inconsistent Stochastic Linear--Quadratic Control: Characterization and Uniqueness of Equilibrium," Post-Print hal-01139343, HAL.
    11. Ralf Korn & Paul Wilmott, 2002. "Optimal Portfolios Under The Threat Of A Crash," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 171-187.
    12. Tomas Björk & Mariana Khapko & Agatha Murgoci, 2017. "On time-inconsistent stochastic control in continuous time," Finance and Stochastics, Springer, vol. 21(2), pages 331-360, April.
    13. Christoph Czichowsky, 2013. "Time-consistent mean-variance portfolio selection in discrete and continuous time," Finance and Stochastics, Springer, vol. 17(2), pages 227-271, April.
    14. Steffensen, Mogens, 2011. "Optimal consumption and investment under time-varying relative risk aversion," Journal of Economic Dynamics and Control, Elsevier, vol. 35(5), pages 659-667, May.
    15. Tomas Björk & Agatha Murgoci & Xun Yu Zhou, 2014. "Mean–Variance Portfolio Optimization With State-Dependent Risk Aversion," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca De Gennaro Aquino & Sascha Desmettre & Yevhen Havrylenko & Mogens Steffensen, 2024. "Equilibrium control theory for Kihlstrom-Mirman preferences in continuous time," Papers 2407.16525, arXiv.org, revised Oct 2024.
    2. Fahrenwaldt, Matthias Albrecht & Jensen, Ninna Reitzel & Steffensen, Mogens, 2020. "Nonrecursive separation of risk and time preferences," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 95-108.
    3. Yang Shen & Bin Zou, 2021. "Mean-Variance Investment and Risk Control Strategies -- A Time-Consistent Approach via A Forward Auxiliary Process," Papers 2101.03954, arXiv.org.
    4. Xue Dong He & Xun Yu Zhou, 2021. "Who Are I: Time Inconsistency and Intrapersonal Conflict and Reconciliation," Papers 2105.01829, arXiv.org.
    5. Shen, Yang & Zou, Bin, 2021. "Mean–variance investment and risk control strategies — A time-consistent approach via a forward auxiliary process," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 68-80.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liyuan Wang & Zhiping Chen, 2019. "Stochastic Game Theoretic Formulation for a Multi-Period DC Pension Plan with State-Dependent Risk Aversion," Mathematics, MDPI, vol. 7(1), pages 1-16, January.
    2. Xue Dong He & Xun Yu Zhou, 2021. "Who Are I: Time Inconsistency and Intrapersonal Conflict and Reconciliation," Papers 2105.01829, arXiv.org.
    3. Marcel Nutz & Yuchong Zhang, 2019. "Conditional Optimal Stopping: A Time-Inconsistent Optimization," Papers 1901.05802, arXiv.org, revised Oct 2019.
    4. Guohui Guan, 2020. "Equilibrium and Precommitment Mean-Variance Portfolio Selection Problem with Partially Observed Price Index and Multiple Assets," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 25-47, March.
    5. Felix Fie{ss}inger & Mitja Stadje, 2023. "Time-Consistent Asset Allocation for Risk Measures in a L\'evy Market," Papers 2305.09471, arXiv.org, revised Oct 2024.
    6. Bian, Lihua & Li, Zhongfei & Yao, Haixiang, 2018. "Pre-commitment and equilibrium investment strategies for the DC pension plan with regime switching and a return of premiums clause," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 78-94.
    7. Yan, Tingjin & Wong, Hoi Ying, 2020. "Open-loop equilibrium reinsurance-investment strategy under mean–variance criterion with stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 105-119.
    8. De Gennaro Aquino, Luca & Sornette, Didier & Strub, Moris S., 2023. "Portfolio selection with exploration of new investment assets," European Journal of Operational Research, Elsevier, vol. 310(2), pages 773-792.
    9. Van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2018. "Time-consistent mean–variance portfolio optimization: A numerical impulse control approach," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 9-28.
    10. Camilo Hern'andez & Dylan Possamai, 2020. "Me, myself and I: a general theory of non-Markovian time-inconsistent stochastic control for sophisticated agents," Papers 2002.12572, arXiv.org, revised Jul 2021.
    11. Li, Yongwu & Qiao, Han & Wang, Shouyang & Zhang, Ling, 2015. "Time-consistent investment strategy under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 187-197.
    12. van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2021. "The surprising robustness of dynamic Mean-Variance portfolio optimization to model misspecification errors," European Journal of Operational Research, Elsevier, vol. 289(2), pages 774-792.
    13. Liang, Zongxia & Song, Min, 2015. "Time-consistent reinsurance and investment strategies for mean–variance insurer under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 66-76.
    14. Huiling Wu & Chengguo Weng & Yan Zeng, 2018. "Equilibrium consumption and portfolio decisions with stochastic discount rate and time-varying utility functions," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(2), pages 541-582, March.
    15. Chen, Zhiping & Yang, Peng, 2020. "Robust optimal reinsurance–investment strategy with price jumps and correlated claims," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 27-46.
    16. Bingyan Han & Chi Seng Pun & Hoi Ying Wong, 2023. "Robust Time-inconsistent Linear-Quadratic Stochastic Controls: A Stochastic Differential Game Approach," Papers 2306.16982, arXiv.org, revised Sep 2024.
    17. Bingyan Han & Hoi Ying Wong, 2019. "Time-inconsistency with rough volatility," Papers 1907.11378, arXiv.org, revised Dec 2021.
    18. Chi Kin Lam & Yuhong Xu & Guosheng Yin, 2016. "Dynamic portfolio selection without risk-free assets," Papers 1602.04975, arXiv.org.
    19. Wang, Hao & Wang, Rongming & Wei, Jiaqin, 2019. "Time-consistent investment-proportional reinsurance strategy with random coefficients for mean–variance insurers," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 104-114.
    20. Ling Wang & Mei Choi Chiu & Hoi Ying Wong, 2021. "Time-consistent mean-variance reinsurance-investment problem with long-range dependent mortality rate," Papers 2112.06602, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:91:y:2020:i:3:d:10.1007_s00186-019-00687-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.