IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v64y2015icp337-350.html
   My bibliography  Save this article

Modeling mortality and pricing life annuities with Lévy processes

Author

Listed:
  • Ahmadi, Seyed Saeed
  • Gaillardetz, Patrice

Abstract

We consider the pricing of annuity-due under stochastic force of mortality. Similarly to Renshaw et al. (1996) and Sithole et al. (2000), the force of mortality will be defined using an exponential function of Legendre polynomials. We extend the approach of Ballotta and Haberman (2006) by conditionally adding α-stable Lévy subordinators in the force of mortality. In particular, we focus on the Gamma and Variance-Gamma processes in order to show how Lévy subordinators can capture mortality shocks. Generalized Linear Models is used to estimate coefficients of the explanatory variables and the Lévy process. For this purpose, the coefficients of the process are obtained by maximizing the log-likelihood function. We use the mortality data of males in Japan from 1998–2011 and the U.S. from 1965–2010 in order to compare our results with the model proposed by Renshaw et al. (1996). Some preferences are indicated based on Akaike’s information criterion, Bayesian information criterion, likelihood ratio test and Akaike weights to support the proposed model. We then use a cubic smoothing spline method to fit the interest rate curve and illustrate some over (under) estimations in the prices of annuities under the structure suggested by Renshaw et al. (1996).

Suggested Citation

  • Ahmadi, Seyed Saeed & Gaillardetz, Patrice, 2015. "Modeling mortality and pricing life annuities with Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 337-350.
  • Handle: RePEc:eee:insuma:v:64:y:2015:i:c:p:337-350
    DOI: 10.1016/j.insmatheco.2015.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668715001018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2015.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ernst Eberlein & Sebastian Raible, 1999. "Term Structure Models Driven by General Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 9(1), pages 31-53, January.
    2. Hainaut, Donatien & Devolder, Pierre, 2008. "Mortality modelling with Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 409-418, February.
    3. Sithole, Terry Z. & Haberman, Steven & Verrall, Richard J., 2000. "An investigation into parametric models for mortality projections, with applications to immediate annuitants' and life office pensioners' data," Insurance: Mathematics and Economics, Elsevier, vol. 27(3), pages 285-312, December.
    4. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    5. Pitacco, Ermanno & Denuit, Michel & Haberman, Steven & Olivieri, Annamaria, 2009. "Modelling Longevity Dynamics for Pensions and Annuity Business," OUP Catalogue, Oxford University Press, number 9780199547272.
    6. Renshaw, A.E. & Haberman, S. & Hatzopoulos, P., 1996. "The Modelling of Recent Mortality Trends in United Kingdom Male Assured Lives," British Actuarial Journal, Cambridge University Press, vol. 2(2), pages 449-477, June.
    7. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    8. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two‐Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718, December.
    9. Chou-Wen Wang & Hong-Chih Huang & I-Chien Liu, 2011. "A Quantitative Comparison of the Lee-Carter Model under Different Types of Non-Gaussian Innovations," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 36(4), pages 675-696, October.
    10. Renshaw, A. E. & Haberman, S., 2003. "Lee-Carter mortality forecasting with age-specific enhancement," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 255-272, October.
    11. Ballotta, Laura & Haberman, Steven, 2006. "The fair valuation problem of guaranteed annuity options: The stochastic mortality environment case," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 195-214, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Jun & Jiang, Fan & Liu, Yong & Yang, Jingping, 2020. "Copula-based Markov process," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 166-187.
    2. Asmerilda Hitaj & Lorenzo Mercuri & Edit Rroji, 2019. "Lévy CARMA models for shocks in mortality," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 205-227, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Homa Magdalena, 2020. "Mathematical Reserves vs Longevity Risk in Life Insurances," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 24(1), pages 23-38, March.
    2. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    3. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    4. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2016. "A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting," Papers 1605.09484, arXiv.org.
    5. Lin, Tzuling & Tzeng, Larry Y., 2010. "An additive stochastic model of mortality rates: An application to longevity risk in reserve evaluation," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 423-435, April.
    6. Ahmadi, Seyed Saeed & Li, Johnny Siu-Hang, 2014. "Coherent mortality forecasting with generalized linear models: A modified time-transformation approach," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 194-221.
    7. Yang, Sharon S. & Wang, Chou-Wen, 2013. "Pricing and securitization of multi-country longevity risk with mortality dependence," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 157-169.
    8. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    9. Michel Denuit, 2009. "Life Anuities with Stochastic Survival Probabilities: A Review," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 463-489, September.
    10. Hatzopoulos, P. & Haberman, S., 2009. "A parameterized approach to modeling and forecasting mortality," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 103-123, February.
    11. Shen, Yang & Siu, Tak Kuen, 2013. "Longevity bond pricing under stochastic interest rate and mortality with regime-switching," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 114-123.
    12. Levantesi, Susanna & Menzietti, Massimiliano, 2012. "Managing longevity and disability risks in life annuities with long term care," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 391-401.
    13. Han Lin Shang & Steven Haberman, 2020. "Retiree Mortality Forecasting: A Partial Age-Range or a Full Age-Range Model?," Risks, MDPI, vol. 8(3), pages 1-11, July.
    14. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2017. "Cohort effects in mortality modelling: a Bayesian state-space approach," Papers 1703.08282, arXiv.org.
    15. R. Giacometti & S. Ortobelli & M. Bertocchi, 2011. "A Stochastic Model for Mortality Rate on Italian Data," Journal of Optimization Theory and Applications, Springer, vol. 149(1), pages 216-228, April.
    16. Cox, Samuel H. & Lin, Yijia & Pedersen, Hal, 2010. "Mortality risk modeling: Applications to insurance securitization," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 242-253, February.
    17. Chou-Wen Wang & Hong-Chih Huang & I-Chien Liu, 2013. "Mortality Modeling With Non-Gaussian Innovations and Applications to the Valuation of Longevity Swaps," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 775-798, September.
    18. Huang, H. & Milevsky, M.A. & Salisbury, T.S., 2017. "Retirement spending and biological age," Journal of Economic Dynamics and Control, Elsevier, vol. 84(C), pages 58-76.
    19. Karim Barigou & Stéphane Loisel & Yahia Salhi, 2020. "Parsimonious Predictive Mortality Modeling by Regularization and Cross-Validation with and without Covid-Type Effect," Risks, MDPI, vol. 9(1), pages 1-18, December.
    20. Asmerilda Hitaj & Lorenzo Mercuri & Edit Rroji, 2019. "Lévy CARMA models for shocks in mortality," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 205-227, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:64:y:2015:i:c:p:337-350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.